1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fomenos
3 years ago
6

Why do the passengers on a high-flying airplane not appear weightless, similar to the astronauts on the space station?

Physics
1 answer:
sergey [27]3 years ago
4 0

<span>Even in space, there is still presence of gravity. The cause of weightlessness is not how far above the earth the space shuttle is but rather how fast it is travelling. The shuttle is in free fall causing weightlessness, but it is travelling fast enough to miss the earth as it falls. Similarly, the airplane could also provide weightlessness if it went free fall as well. However, that ends as the plane hits the ground. </span>

You might be interested in
Acceleration toward the center of a curved path is called
Serggg [28]

Answer:

Centripetal acceleration.

Explanation:

Centripetal acceleration is a property of a body moving in a uniform circular path and it is directed radially towards the center of the circle in which body is rotating.

The force which causes this acceleration is centripetal force which is also directed towards the center of the circle and pulls the body towards its center.

It is calculated through following formula

a=v^2/r

where v is velocity and r is the radius of the circle.

7 0
3 years ago
How much is a city of a body when it covers 600m in 5 min?
Fofino [41]

Answer:

2m/s

Explanation:

5min × 60sec

=300

now,

600÷300

=2

3 0
3 years ago
Two tiny particles having charges of +5.00 μC and +7.00 μC are placed along the x-axis. The +5.00-µC particle is at x = 0.00 cm,
Liula [17]

Answer:

The third charged particle must be placed at x = 0.458 m = 45.8 cm

Explanation:

To solve this problem we apply Coulomb's law:  

Two point charges (q₁, q₂) separated by a distance (d) exert a mutual force (F) whose magnitude is determined by the following formula:  

F = \frac{k*q_1*q_2}{d^2} Formula (1)  

F: Electric force in Newtons (N)

K : Coulomb constant in N*m²/C²

q₁, q₂: Charges in Coulombs (C)  

d: distance between the charges in meters (m)

Equivalence  

1μC= 10⁻⁶C

1m = 100 cm

Data

K = 8.99 * 10⁹ N*m²/C²

q₁ = +5.00 μC = +5.00 * 10⁻⁶ C

q₂= +7.00 μC = +7.00 * 10⁻⁶ C

d₁ = x (m)

d₂ = 1-x (m)

Problem development

Look at the attached graphic.

We assume a positive charge q₃ so F₁₃ and F₂₃ are repulsive forces and must be equal so that the net force is zero:

We use formula (1) to calculate the forces F₁₃ and F₂₃

F_{13} = \frac{k*q_1*q_3}{d_1^2}

F_{23} = \frac{k*q_2*q_3}{d_2^2}

F₁₃ = F₂₃

\frac{k*q_1*q_3}{d_1^2} = \frac{k*q_2*q_3}{d_2^2} We eliminate k and q₃ on both sides

\frac{q_1}{d_1^2}= \frac{q_2}{d_2^2}

\frac{q_1}{x^2}=\frac{q_2}{(1-x)^2}

\frac{5*10^{-6}}{x^2}=\frac{7*10^{-6}}{(1-x)^2} We eliminate 10⁻⁶ on both sides

(1-x)^2 = \frac{7}{5} x^2

1-2x+x^2=\frac{7}{5} x^2

5-10x+5x^2=7 x^2

2x^2+10x-5=0

We solve the quadratic equation:

x_1 = \frac{-b+\sqrt{b^2-4ac} }{2a} = \frac{-10+\sqrt{10^2-4*2*(-5)} }{2*2} = 0.458m

x_2 = \frac{-b-\sqrt{b^2-4ac} }{2a} = \frac{-10-\sqrt{10^2-4*2*(-5)} }{2*2} = -5.458m

In the option x₂, F₁₃ and F₂₃ will go in the same direction and will not be canceled, therefore we take x₁ as the correct option since at that point the forces are in  opposite way .

x = 0.458m = 45.8cm

8 0
3 years ago
In the final situation below, the 8.0 kg box has been launched with a speed of 10.0 m/s across a frictionless surface. Find the
Murljashka [212]

Answer:

the energy of the spring at the start is 400 J.

Explanation:

Given;

mass of the box, m = 8.0 kg

final speed of the box, v = 10 m/s

Apply the principle of conservation of energy to determine the energy of the spring at the start;

Final Kinetic energy of the box = initial elastic potential energy of the spring

K.E = Ux

¹/₂mv² = Ux

¹/₂ x 8 x 10² = Ux

400 J = Ux

Therefore, the energy of the spring at the start is 400 J.

8 0
3 years ago
A 26-kg sled is on a snow-covered slope. The coefficients of friction between the sled’s runners and the snow are µs = 0.096 and µ
sweet-ann [11.9K]

Answer:

Explanation:

Given

mass of sled =26 kg

coefficient of static friction \mu _s=0.096

coefficient of kinetic friction \mu _k=0.072

In order to move sled from rest we need to provide a force greater than static friction which is given by

f_s=\mu mg=0.096\times 26\times 9.8=24.46 N

After Moving Sled kinetic friction comes in to play which is less than static friction

f_k=\mu _kmg=0.072\times 26\times 9.8=18.34 N

therefore minimum force to keep moving sledge at constant velocity is 18.34 N

3 0
3 years ago
Other questions:
  • A ________ stream pattern develops on lands underlain by tilted or folded, alternating hard and soft, sedimentary strata.
    14·1 answer
  • If a certain mass of mercury has a volume of 0.002 m3 at a temperature of 20°C, what will be the volume at 50°C?
    12·1 answer
  • Which is an effect of gravity on objects on the surface of Earth? Check all that apply.
    11·1 answer
  •  How does ​energy change (transforms) as the mass is dropping?
    11·1 answer
  • The formula to calculate velocity is
    11·1 answer
  • Both atypical and traditional antipsychotics _____ levels of _____.
    8·1 answer
  • Geothermal pumps can be used for cooling, but not heating. true or false?
    12·1 answer
  • Difference between Pascal’s law and law of flotation
    14·1 answer
  • An object increases vert its velocity from 22M/S 236M/S and five seconds. What is the acceleration of the object
    13·1 answer
  • If a golf ball is dropped from the thirteenth floor of a building, ignoring air resistance, after falling for 7.00 seconds the s
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!