Answer:
43.2 N
Explanation:
= Wavelength = 0.75 m
f = Frequency = 40 Hz
m = Mass of string = 0.12 kg
L = Length of string = 2.5 m
= Linear density = 
Velocity of wave is given by

The tension in string is given by

The tension in the string is 43.2 N
Answer:
The value 
Explanation:
From the question we are told that
The volume blood ejected is 
The velocity of the blood ejected is 
The density of blood is 
The heart beat is 
The average force exerted by the blood on the wall of the aorta is mathematically represented as

=> 
=> 
Answer:
Explanation:
A ) angular velocity ω = 2π / T
= 2 x 3.14 / 60
= .10467 rad / s
linear velocity v = ω R
= .10467 x 50
= 5.23 m / s
centripetal force = m v² / R
= mg v² / gR
= 834 x 5.23² / 9.8 x 50
= 46.55 N
B )
apparent weight
= mg - centripetal force
= 834 - 46.55
= 787.45 N
C ) apparent weight
= mg + centripetal force
= 834 + 46.55
= 880.55 N.
D )
For apparent weight to be zero
centripetal force = mg
mg = mv² / R
v² = gR
= 9.8 x 50
= 490
v = 22.13 m /s
time period of revolution
= 2π R /v
2 x 3.14 x 50 / 22.13
= 14.19 s
Energy from the gravitational potential store in converted to kinetic energy. Air friction acts against the object, dissipating some energy as heat or sound. The object will continuously accelerate until the acceleration is equal to the air friction acting against it. This is when it reaches terminal velocity
Answer:
F = -4567.40 N
Explanation:
Given that,
The power developed by the engine, P = 196 hp
1 hp = 746 W
196 hp = 146157 W
Speed of the car, v = 32 m/s
Let F is the total friction force acting on the car. The product of force and velocity is called the power developed by the engine. It is given by :



F = -4567.40 N
So, the total frictional force acting on the car is 4567.40 N. Hence, this is the required solution.