At the given erro in angle, the error in the measurement of sin 90 degrees would be 0.001.
<h3>
Percentage error</h3>
The percentage error of any measurement is obtained from the ratio of the error to the actual measurement.
The error of sin 90 degrees is calculated as follows;
sin 90 = 1
error in measurement = sin(90 - 0.5)
error in measurement = sin(89.5) = 0.999
<h3>Error in sin 90 degrees</h3>
Error in sin 90 degrees = 1 - 0.999
Error in sin 90 degrees = 0.001
Thus, at the given erro in angle, the error in sin 90 degrees would be 0.001.
Learn more about error in measurement here: brainly.com/question/26668346
A prism will separate white light into a rainbow of light
Answer:
B. space quantization.
Explanation:
In 1921, Otto Stern developed the idea behind this experiment, while Walther Gerlach performed the actual experiment in 1922. The Ster-Gerlach experiment provides prove to the fact that the spatial orientation of angular momentum is quantized. To demonstrate the experiment, silver atoms were made to travel through a magnetic field path.
Before they hit the screen(usually a glass slide), they were deflected because of their non-zero magnetic moment. There was an expected result for this experiment, but the actual observation on the glass slide was a continuous distribution of the silver atoms that actually hit the glass. This experiment was useful in proving that in all atomic-scale systems, there was a quantization of angular momentum.
Answer:
The volume of the larger cube is 5.08 g/cm³.
Explanation:
Given that,
Mass of smaller cube = 20 g
Density of smaller cube 
Dylan has two cubes of iron.
The larger cube has twice the mass of the smaller cube.

Density is same for both cubes because both cubes are same material.
The density is equal to the mass divided by the volume.


Where, V = volume
m = mass

We need to calculate the volume of smaller mass
The volume of smaller mass



Now, We need to calculate the volume of large cube



Hence, The volume of the larger cube is 5.08 g/cm³.
Answer:
- A book lying on a table - Balanced force
- An airplane cruising in level flight - Balanced
- A rock falling from a cliff - Unbalanced force
- A bridge collapsing in an earthquake - Unbalanced force
- A man sitting on a park bench - Balanced force
- A space shuttle taking off - Unbalanced force
- A car maintaining a constant speed on a straight road - Balanced force
- An airplane landing - Unbalanced force
Explanation:
Usually, one or more forces act on a body at an instant of time. When these forces acting on a body and bring the body in the equilibrium position, the force is said to be balanced. The unbalanced force changes the equilibrium state of the body.
As in the case of an airplane cruising in a level flight, the weight of the plane will be equal to the lift force and the thrust is equal to the drag. So the plane is experiencing a balanced force.