Huh that’s cool! Cuz studying sucks.
Answer:
w = 1.14 rad / s
Explanation:
This is an angular momentum exercise. Let's define a system formed by the three bodies, the platform, the bananas and the monkey, in such a way that the torques during the collision have been internal and the angular momentum is preserved.
Initial instant. The platform alone
L₀ = I w₀
Final moment. When the bananas are on the shelf
we approximate the bananas as a point load and the distance is indicated
x = 0.45m
L_f = (m x² + I ) w₁
angular momentum is conserved
L₀ = L_f
I w₀ = (m x² + I) w₁
w₁ =
Let's repeat for the platform with the bananas and the monkey is the one that falls for x₂ = 1.73 m
initial instant. The platform and bananas alone
L₀ = I₁ w₁
I₁ = (m x² + I)
final instant. After the crash
L_f = I w
L_f = (I₁ + M x₂²) w
the moment is preserved
L₀ = L_f
(m x² + I) w₁ = ((m x² + I) + M x₂²) w
(m x² + I) w₁ = (I + m x² + M x₂²) w
we substitute
w =
w =
the moment of inertia of a circular disk is
I = ½ m_p x₂²
we substitute
w =
let's calculate
w =
w =
w = 1.14 rad / s
Answer:
The length of the train in the frame of the lecture room is 40.59 m.
Explanation:
Given that,
Speed = 0.894 c
Original length = 90.6 m
We need to calculate the length of the train in the frame of the lecture room
Using formula of length contraction

Where,
=original length
v = speed of train
Put the value into the formula



Hence, The length of the train in the frame of the lecture room is 40.59 m.
Potential difference required in an electron microscope to give an electron wavelength of 4. 5 nm will be 0.063 V.
The difference in potential between two points that represents the work involved or the energy released in the transfer of a unit quantity of electricity from one point to the other is called potential difference.
The wavelength of an electron is calculated for a given energy (accelerating voltage) by using the de Broglie relation between the momentum p and the wavelength λ of an electron
lambda = 4.5 nm = 4.5 *
m
h =
J s
e = 1.6 *
C
m = 9.1 *
kg
Energy = eV
lambda = h /
= h /
=
/ (2m (eV))
V =
/ (2 m e
)
V =
/ 2 * 9.1 *
* 1.6 *
* 
V = 0.063 V
To learn more about wavelength of an electron here
brainly.com/question/17295250
#SPJ4