Answer:
B
Explanation:
Given:-
- The charge of the test particle q = 3.0 * 10^-9 C
- The force exerted by the metal sphere F = 6.0 * 10^-5 N
Find:-
The magnitude and direction of the electric field
strength at this location?
Solution:-
- The relationship between the electrostatic force F exerted by the metal sphere on the test-charge and the Electric Field strength E at the position of test charge is given by:
F = E*q
- Using the data given we can determine E:
E = F / q
E = (6.0 * 10^-5) / (3.0 * 10^-9)
E = 20,000 N/C
- The direction of electric field is given by the net charge of the source ( metal sphere). The metal sphere is negative charge hence the direction of Electric Field strength E is directed towards the metal sphere.
B, C. Also literally a quick search yielded these results, roughly half the time to type this out.
-A photon travels, on average, a particular distance, d, before being briefly absorbed and released by an atom, which scatters it in a new random direction.
-Given d and the speed of light, c, you can figure out the average time step and space step size (how often the photon “steps” and how far it “steps” each time).
-The size of the Sun is figured in terms of step size. Some surprisingly tricky math happens, involving “Brownian motion” and probabilities. Finally,
-The average time it would take to get to the surface of the Sun is found.
Answer:
72.75 kg m^2
Explanation:
initial angular velocity, ω = 35 rpm
final angular velocity, ω' = 19 rpm
mass of child, m = 15.5 kg
distance from the centre, d = 1.55 m
Let the moment of inertia of the merry go round is I.
Use the concept of conservation of angular momentum
I ω = I' ω'
where I' be the moment of inertia of merry go round and child
I x 35 = ( I + md^2) ω'
I x 35 = ( I + 25.5 x 1.55 x 1.55) x 19
35 I = 19 I + 1164
16 I = 1164
I = 72.75 kg m^2
Thus, the moment of inertia of the merry go round is 72.75 kg m^2.
Answer:
Gold Has A Higher Resistance Than Copper. The Sample Of Gold Is Thinner Than The Sample Of Copper. Electrons In Gold Are More Likely To Be Scattered Than Electrons In Copper At Room Temperature When they are exelerated by the same electric field.
Explanation: