The wavelength of the first order bright band light light is 714 nm .
Explanation:
We have to find the wavelength of the first order brightness of a light. Here we are using Huygen's principle of light.
The formula is
nλ =d sinθ
where, n is the order of maximum
λ is the wavelength of light
d is the distance between the lines on diffraction grating.
θ is the angle.
For the given equation n is 1 because the problem states that the light forms 1st order bright band
λ is unknown.
d =
or 0.0000014 m
sin (30) = 0.5
so,
1(λ) = (0.0000014)(0.5)
= 0.0000000714
= 714 nm
Thus, The wavelength of the first order bright band light light is 714 nm .
We see that around us there are many things that makes use of circuits to make our lives easier Circuits are used to convert electrical energy to other forms of energy. For instance, a heater contains circuits which converts the electrical energy into heat. A circuit in a fan converts the electrical energy into motion. In a doorbell, the circuits are used to convert electrical energy into sound.<span />
The hot molecules around the heat source expands, becomes less dense, then rises. When it rises, the cooler molecules moves down to take its place. This can occur in fluid, which include gas or liquid.
Answer:
Wave A.
Explanation:
The energy of a wave is directly proportional to the square of the amplitude.
If a wave has higher amplitude, it will have more energy. On the other hand, a wave having lower amplitude, it will have less eenergy.
In this case, we need to tell which wave has higher energy. Hence, the correct option is A because it has a higher amplitude.