Explanation:
1st- states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction.
2nd- states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it. (most important law)
3rd- states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction. (law of action/reaction)
Answer: 2, the nuclear strong force drops to practically nothing at large distances.
Explanation: The protons and neutrons in the nucleus share subatomic particles called pions. This exchange is what keeps the protons and neutrons stuck together in the nucleus. Despite the strong force being the strongest force, it has a very small range. This is because pions have very short lifespans. So, the strong force would have literally no effect at large distances.
Hope that helped! :)
Explanation:
We know that the sky appears to us like a sphere called as celestial sphere which appears to rotate around an imaginary axis because of Earth's rotation. Since the axis cuts the celestial sphere at celestial poles all the object seems to circle around the celestial poles.
Condition 1: The stars rise and set perpendicular to the horizon
The observer is at the equator
Condition 2: The stars circle the sky parallel to the horizon
The observer is at the Pole of the Earth
Condition 3: The celestial equator passes through the zenith
The observer is at the equator
Condition 4: In the course of a year, all stars are visible
The observer is at the equator
Condition 5: The Sun rises on March 21 and does not set until September 21 (ideally)
The observer is at North Pole
Answer:
Explanation:
I suppose it has to do with the way the diagram is drawn. The heat does not reflect which makes both A and B incorrect.
C would have nothing to do with either reflection or refraction.
That only leaves D which is the answer.
Answer:
Photoelectric-type alarms aim a light source into a sensing chamber at an angle away from the sensor. Smoke enters the chamber, reflecting light onto the light sensor; triggering the alarm.
Explanation:
nfpa.org is the website with theanswer