Answer:
#See solution for details.
Explanation:
1.
Tools:
.
:Calculate the speed of the wave using the time,
it takes to travel along the rope. Rope's length,
is measured using the meter stick.
-Attach one end of rope to a wall or post, shake from the unfixed end to generate a pulse. Measure the the time it takes for the pulse to reach the wall once it starts traveling using the stopwatch.
-Speed of the pulse can then be obtained as:

: Apply force of known value to the rope then use the following relation equation to find the speed of a pulse that travels on the rope.

-Use the measuring stick and measuring scale to determine
values of the rope then obtain
.
-Use the force measuring constant to determine
. These values can the be substituted in
to obtain 
Use the Inverse square law, Intensity (I) of a light is inversely proportional to the square of the distance(d).
I=1/(d*d)
Let Intensity for lamp 1 is L1 distance be D1 so on, L2 D2 for Intensity for lamp 2 and its distance.
L1/L2=(D2*D2)/(D1*D1)
L1/15=(200*200)/(400*400)
L1=15*0.25
L1=3.75 <span>candela</span>
Metals are not brittle so it can’t be the first one or the third one, both metalloids and metals are shiny so it can’t be the second one. Therefore, it would be the last one because both metalloids and metals are shiny and both are solids at room temperature because it is not a high enough melting point.
ANSWER: Both are shiny and are solid at room temperature.
Given that,
Height =1.5 m
Angle = 45°
We need to find the greater speed of the ball
Using conservation of energy


Here, initial velocity and final potential energy is zero.

Put the value into the formula




Hence, the greater speed of the ball is 5.42 m/s.