1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dangina [55]
3 years ago
8

WILL MARK THE BRAINLIEST!!! The diagram shows a carrier wave that is used to transmit information. Which best illustrates how th

e carrier wave would likely appear after pulse modulation?

Physics
2 answers:
Sholpan [36]3 years ago
8 0

Answer:

Second image in your list of possible answers

Explanation:

The second option is what you would expect from modulating a sinusoidal carrier wave of higher frequency after being modulated by a square pulse of lower frequency that allows part of the carrier signal to travel during the time the square signal is constant different from zero, and be absent (flat) during the time the square pulse signal has amplitude zero.

OlgaM077 [116]3 years ago
4 0

The second line is the best picture of a pulse-modulated carrier.

It would be easy to build a circuit where each pulse ... when it comes along ... just switches the carrier OFF for as long as the pulse lasts.

You might be interested in
Read the scenario and solve these two problems.
Burka [1]

Answers:

a) 5400000 J

b) 45.92 m

Explanation:

a) The kinetic energy K of an object is given by:

K=\frac{1}{2}mV^{2}

Where:

m=12000 kg is the mass of the train

V=30 m/s is the speed of the train

Solving the equation:

K=\frac{1}{2}(12000 kg)(30 m/s)^{2}

K=5400000 J This is the train's kinetic energy at its top speed

b) Now, according to the Conservation of Energy Law, the total initial energy is equal to the total final energy:

E_{i}=E_{f}

K_{i}+P_{i}=K_{f}+P_{f}

Where:

K_{i}=5400000 J is the train's initial kinetic energy

P_{i}=0 J is the train's initial potential energy

K_{f}=0 J is the train's final kinetic energy

P_{f}=mgh is the train's final potential energy, where g=9.8 m/s^{2} is the acceleration due gravity and h is the height.

Rewriting the equation with the given values:

5400000 J=(12000 kg)(9.8 m/s^{2})h

Finding h:

h=45.918 m \approx 45.92 m

7 0
3 years ago
Read 2 more answers
M = 30.3kg<br>M = 40.17kg 9<br>R = 0.5m<br>G = 6. 67x10^11<br>F ?​
Lena [83]

Answer:

m¹=30.3kg

m²=40.17kg

R=0.5m

G=6.67*10¹¹

F=Gm¹m²/R²

=160.68

4 0
3 years ago
Seema knows the mass of a basketball. What other information is needed to find the ball’s potential energy?
adelina 88 [10]

Potential energy can be found using this formula:

PE= m * g * h

where:

PE= potential energy

m=mass

g=gravitational acceleration constant (9.8 m/s^2)

h= height

So your answer is height because you also use the gravitational constant.

7 0
3 years ago
A merry-go-round with a rotational inertia of 600 kg m2 and a radius of 3. 0 m is initially at rest. A 20 kg boy approaches the
Margaret [11]

Hi there!

\boxed{\omega = 0.38 rad/sec}

We can use the conservation of angular momentum to solve.

\large\boxed{L_i = L_f}

Recall the equation for angular momentum:

L = I\omega

We can begin by writing out the scenario as a conservation of angular momentum:

I_m\omega_m + I_b\omega_b = \omega_f(I_m + I_b)

I_m = moment of inertia of the merry-go-round (kgm²)

\omega_m = angular velocity of merry go round (rad/sec)

\omega_f = final angular velocity of COMBINED objects (rad/sec)

I_b = moment of inertia of boy (kgm²)

\omega_b= angular velocity of the boy (rad/sec)

The only value not explicitly given is the moment of inertia of the boy.

Since he stands along the edge of the merry go round:

I = MR^2

We are given that he jumps on the merry-go-round at a speed of 5 m/s. Use the following relation:

\omega = \frac{v}{r}

L_b = MR^2(\frac{v}{R}) = MRv

Plug in the given values:

L_b = (20)(3)(5) = 300 kgm^2/s

Now, we must solve for the boy's moment of inertia:

I = MR^2\\I = 20(3^2) = 180 kgm^2

Use the above equation for conservation of momentum:

600(0) + 300 = \omega_f(180 + 600)\\\\300 = 780\omega_f\\\\\omega = \boxed{0.38 rad/sec}

8 0
3 years ago
A sailfish swims 120 km/hr. How far will it travel in 8.0 minutes?
Rasek [7]

Answer:

16km

Explanation:

First change the minutes into hours then multiply by the distance.

(8÷60)×120=16km

5 0
4 years ago
Other questions:
  • As the frequency of the wave increases, the speed of the wave increases if the wavelength stays the same. Please select the best
    12·1 answer
  • With some manipulation, the rydberg equation can be rewritten in the form e=constant×(1nf2−1ni2) which allows you to calculate t
    7·1 answer
  • The position within a baseball team that is responsible for catching balls in the outfield is called the catcher ? true or false
    14·2 answers
  • The total magnification of a specimen being viewed with a 10X ocular lens and a 40X objective lens is _____.
    10·1 answer
  • How many hours are in a month of 30 days?
    6·1 answer
  • What’s the answer?hhhu
    8·1 answer
  • What state of matter are the outer planets?
    7·2 answers
  • a bus is moving with the velociity of 36 km/hr . after seeing a boy at 20 m ahead on the road, the driver applies the brake and
    11·1 answer
  • 17. For how long should a force of 130 N be applied to an object of mass 50 kg to change its speed from 20 m/s to 60 m/s?
    5·1 answer
  • a steam engine works on its vicinity and 285 k heat is released with the help of 225 degree centigrade energy absorbed to the sy
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!