Answer:
63.8 V
Explanation:
We are given that





Potential difference,V=140 V
We know that

According to question

In series





Potential across 1.2 square cm=
Hence, the voltage across the 1.2 square cm wire=63.8 V
Answer:
497.143 nm.
Explanation:
Diffraction grating experiment is actually done by passing light through diffraction glasses, the passage of the light causes some patterns which can be seen on the screen. This is because light is a wave and it can spread.
The solution to the question is through the use of the formula in the equation (1) below;
Sin θ = m × λ. ---------------------------------(1).
Where m takes values from 0, 1, 2, ...(that is the diffraction grating principal maxima).
Also, m × λ = dc/ B -------------------------------------------(2).
We are to find the second wavelength, therefore;
λ2 =( m1/c1) × (c2/m2) × λ1 ------------------------(3).
Where c1 and c2 are the order maximum and m = order numbers. Hence;
λ2 = (1/ .350) × (.870/3) × 600 = 497.143 nm.
Answer:
The correct option is;
Sun, planets, moons, asteroids, comets
Explanation:
The Solar System consists of the system of celestial bodies bound gravitationally to the Sun, which includes the 8 regular planets, 2 dwarf planets, 796, 354 known minor planets, 4,143 comets, moons, which are natural satellites, an asteroid belt, which consists of a belt of rock and metal containing celestial bodies moving in a belt round the Sun
Answer:
E = 5.65 x 10¹⁰ N/C
Explanation:
First we need to find the total charge on the sphere. So, we use the following formula for that purpose:

where,
q = total charge on sphere
V = Volume of Sphere = 
σ = volume charge density = 1.5 C/m³
Therefore,

Now, we use the following formula to find the electric field due to this charged sphere:

where.
E = Electric Field Magnitude = ?
k = Coulomb's Constant = 9 x 10⁹ N.m²/C²
r = radius of sphere = 8 cm = 0.08 m
Therefore,

<u>E = 5.65 x 10¹⁰ N/C</u>
Answer:
The type of light and the material of lenz.
Explanation:
1) As the investigation is based on how the thickness of a lens effect the other variable. Thickness of the lenz is independent variable. So Lidia has to experiment with the different thicknesses in order to find the effect on dependent variable.
2) As the investigation is based to find the point where the beam of light is focused. It's a dependent variable and Lidia has no control over it. So the only thing she can do is to measure and observe how it respond to the changes in independent variable.
3) For conclusion, she has to make sure that the other variables are not effecting the output or results that is the beam point where the light is focused. So she must have to kept constant the type of light and material of lenz otherwise she won't be able to discriminate the effect of thickness of lenz from other causes.