1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
makvit [3.9K]
3 years ago
15

Water flows through a multisection pipe placed horizontally on the ground. The velocity is 3.0 m/s at the entrance and 2.1 m/s a

t the exit. What is the pressure difference between these two points?
a. 0.2 kPa
b. 2.3 kPa
c. 28 kPa
d. 110 kPa
Engineering
1 answer:
Alex_Xolod [135]3 years ago
7 0

Answer:

b. 2.3 kPa.

Explanation:

This situation can be modelled by Bernoulli's Principle, as there are no energy interaction throughout the multisection pipe and current lines exists between both ends. Likewise, this system have no significant change in gravitational potential energy since it is placed horizontally on the ground and is described by the following model:

P_{1} + \rho \cdot \frac{v_{1}^{2}}{2} = P_{2} + \rho \cdot \frac{v_{2}^{2}}{2}

Where:

P_{1}, P_{2} - Pressures at the beginning and at the end of the current line, measured in kilopascals.

\rho - Water density, measured in kilograms per cubic meter.

v_{1}, v_{2} - Fluid velocity at the beginning and at the end of the current line, measured in meters per second.

Now, the pressure difference between these two points is:

P_{1} - P_{2} = \rho \cdot \frac{v_{2}^{2}-v_{1}^{2}}{2}

If \rho = 1000\,\frac{kg}{m^{3}}, v_{1} = 3\,\frac{m}{s} and v_{2} = 2.1\,\frac{m}{s}, then:

P_{1} - P_{2} = \left(1000\,\frac{kg}{m^{3}} \right)\cdot \frac{\left(2.1\,\frac{m}{s} \right)^{2}-\left(3\,\frac{m}{s} \right)^{2}}{2}

P_{1} - P_{2} = -2295\,Pa

P_{1} - P_{2} = -2.295\,kPa (1 kPa is equivalent to 1000 Pa)

Hence, the right answer is B.

You might be interested in
Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at (100%) (125
Anna [14]

Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at 125%.

Section 210.19(A)(1) permits the bigger of the two values listed below to be utilized as the connectors 's ultimate size for sizing an ungrounded branch circuit conductor:

Without any extra adjustments or corrections, either 125% of the continuous load, OR

When adjustment and corrective factors are applied, the load is 100% (not 125% as stated previously).

This will be the same in the 2020 NEC. The introduction of new exception 2 is what has changed. To comprehend this new exception, one must study it very carefully. A part of a branch circuit connected to pressure connectors (such as power distribution blocks) that complies with 110.14(C)(2) may now be sized using the continuous load plus the noncontiguous load instead of 125% of the continuous load thanks to the new exception.

To know more about connectors click here:

brainly.com/question/16987039

#SPJ4

4 0
1 year ago
A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 55 MPa √m (50 ksi √in.). If, during
astra-53 [7]

Answer:

0.024 m = 24.07 mm

Explanation:

1) Notation

\sigma_c = tensile stress = 200 Mpa

K = plane strain fracture toughness= 55 Mpa\sqrt{m}

\lambda= length of a surface crack (Variable of interest)

2) Definition and Formulas

The Tensile strength is the ability of a material to withstand a pulling force. It is customarily measured in units (F/A), like the pressure. Is an important concept in engineering, especially in the fields of materials and structural engineering.

By definition we have the following formula for the tensile stress:

\sigma_c=\frac{K}{Y\sqrt{\pi\lambda}}   (1)

We are interested on the minimum length of a surface that will lead to a fracture, so we need to solve for \lambda

Multiplying both sides of equation (1) by Y\sqrt{\pi\lambda}

\sigma_c Y\sqrt{\pi\lambda}=K   (2)

Sequaring both sides of equation (2):

(\sigma_c Y\sqrt{\pi\lambda})^2=(K)^2  

\sigma^2_c Y^2 \pi\lambda=K^2   (3)

Dividing both sides by \sigma^2_c Y^2 \pi we got:

\lambda=\frac{1}{\pi}[\frac{K}{Y\sigma_c}]^2   (4)

Replacing the values into equation (4) we got:

\lambda=\frac{1}{\pi}[\frac{55 Mpa\sqrt{m}}{1.0(200Mpa)}]^2 =0.02407m

3) Final solution

So the minimum length of a surface crack that will lead to fracture, would be 24.07 mm or more.

7 0
3 years ago
Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 12 MPa, and the condenser pressure i
Brilliant_brown [7]

Answer:

\dot Q_{in} = 372.239\,MW

Explanation:

The water enters to the pump as saturated liquid and equation is modelled after the First Law of Thermodynamics:

w_{in} + h_{in}- h_{out} = 0

h_{out} = w_{in}+h_{in}

h_{out} = 12\,\frac{kJ}{kg} + 191.81\,\frac{kJ}{kg}

h_{out} = 203.81\,\frac{kJ}{kg}

The boiler heats the water to the state of saturated vapor, whose specific enthalpy is:

h_{out} = 2685.4\,\frac{kJ}{kg}

The rate of heat transfer in the boiler is:

\dot Q_{in} = \left(150\,\frac{kg}{s}\right)\cdot \left(2685.4\,\frac{kJ}{kg}-203.81\,\frac{kJ}{kg} \right)\cdot \left(\frac{1\,MW}{1000\,kW} \right)

\dot Q_{in} = 372.239\,MW

3 0
3 years ago
Read 2 more answers
A piece of aluminum wire is 500 ft long and has a diameter of 0.03 inches. What is the resistance of the piece of wire?​
dexar [7]

Answer:

8.85 Ω

Explanation:

Resistance of a wire is:

R = ρL/A

where ρ is resistivity of the material,

L is the length of the wire,

and A is the cross sectional area.

For a round wire, A = πr² = ¼πd².

For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.

Given L = 500 ft and d = 0.03 in = 0.0025 ft:

R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)

R = 8.85 Ω

5 0
3 years ago
Six housing subdivisions within a city area are target for emergency service by a centralized fire station. Where should the new
Marina86 [1]

Answer:

Explanation:

Since there are six points, the minimum distance from all points would be the centroid of polygon formed by A,B,C,D,E,F

To find the coordinates of centroid of a polygon we use the following formula. Let A be area of the polygon.

C_{x}=\frac{1}{6A} sum(({x_{i} +x_{i+1})(x_{i}y_{i+1}-x_{i+1}y_{i}))     where i=1 to N-1 and N=6

C_{y}=\frac{1}{6A} sum(({y_{i} +y_{i+1})(x_{i}y_{i+1}-x_{i+1}y_{i}))

A area of the polygon can be found by the following formulaA=\frac{1}{2} sum(x_{i} y_{i+1} -x_{i+1} y_{i}) where i=1 to N-1

A=\frac{1}{2}[ (x_{1}  y_{2} -x_{2}  y_{1})+ (x_{2}  y_{3} -x_{3}  y_{2})+(x_{3}  y_{4} -x_{4}  y_{3})+(x_{4}  y_{5} -x_{5}  y_{4})+(x_{5}  y_{6} -x_{6}  y_{5})]

A=0.5[(20×25 -25×15) +(25×32 -13×25)+(13×21 -4×32)+(4×8 -18×21)+(18×14 -25×8)

A=225.5 miles²

Now putting the value of area in Cx and Cy

C_{x} =\frac{1}{6A}[ [(x_{1}+x_{2})(x_{1}  y_{2} -x_{2}  y_{1})]+ [(x_{2}+x_{3})(x_{2}  y_{3} -x_{3}  y_{2})]+[(x_{3}+x_{4})(x_{3}  y_{4} -x_{4}  y_{3})]+[(x_{4}+x_{5})(x_{4}  y_{5} -x_{5}  y_{4})]+[(x_{5}+x_{6})(x_{5}  y_{6} -x_{6}  y_{5})]]

putting the values of x's and y's you will get

C_{x} =15.36

For Cy

C_{y} =\frac{1}{6A}[ [(y_{1}+y_{2})(x_{1}  y_{2} -x_{2}  y_{1})]+ [(y_{2}+y_{3})(x_{2}  y_{3} -x_{3}  y_{2})]+[(y_{3}+y_{4})(x_{3}  y_{4} -x_{4}  y_{3})]+[(y_{4}+y_{5})(x_{4}  y_{5} -x_{5}  y_{4})]+[(y_{5}+y_{6})(x_{5}  y_{6} -x_{6}  y_{5})]]

putting the values of x's and y's you will get

C_{y} =22.55

So coordinates for the fire station should be (15.36,22.55)

5 0
3 years ago
Other questions:
  • For a steel alloy it has been determined that a carburizing heat treatment of 15 h duration will raise the carbon concentration
    6·1 answer
  • PLEASE HELP 100 POINTS!!! WILL MARK BRAINLIEST
    9·2 answers
  • How fast is a 2012 nissan sentra<br>speed and acceleration ​
    15·1 answer
  • What is the difference between tension and compression?
    9·1 answer
  • You are given a noninverting 741 op-amp with a dc-gain of 23.6 dB. The input signal to this amplifier is;Vin(t) = (0.18)∙cos(2π(
    5·1 answer
  • Who is responsible for conducting a hazard assessment?
    8·1 answer
  • The branding, packaging, and labeling of your product should accomplish all of the following except
    12·1 answer
  • A golfer and her caddy see lightning nearby. the golfer is about to take his shot with a metal club, while her caddy is holding
    12·1 answer
  • What is the sun's degree angle in the sky in summer and in winter?
    8·1 answer
  • When recycling paint booth filters, you must put them in an __________ container for transport as a solid waste.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!