Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at 125%.
Section 210.19(A)(1) permits the bigger of the two values listed below to be utilized as the connectors 's ultimate size for sizing an ungrounded branch circuit conductor:
Without any extra adjustments or corrections, either 125% of the continuous load, OR
When adjustment and corrective factors are applied, the load is 100% (not 125% as stated previously).
This will be the same in the 2020 NEC. The introduction of new exception 2 is what has changed. To comprehend this new exception, one must study it very carefully. A part of a branch circuit connected to pressure connectors (such as power distribution blocks) that complies with 110.14(C)(2) may now be sized using the continuous load plus the noncontiguous load instead of 125% of the continuous load thanks to the new exception.
To know more about connectors click here:
brainly.com/question/16987039
#SPJ4
Answer:
0.024 m = 24.07 mm
Explanation:
1) Notation
= tensile stress = 200 Mpa
= plane strain fracture toughness= 55 Mpa
= length of a surface crack (Variable of interest)
2) Definition and Formulas
The Tensile strength is the ability of a material to withstand a pulling force. It is customarily measured in units (F/A), like the pressure. Is an important concept in engineering, especially in the fields of materials and structural engineering.
By definition we have the following formula for the tensile stress:
(1)
We are interested on the minimum length of a surface that will lead to a fracture, so we need to solve for 
Multiplying both sides of equation (1) by 
(2)
Sequaring both sides of equation (2):
(3)
Dividing both sides by
we got:
(4)
Replacing the values into equation (4) we got:
![\lambda=\frac{1}{\pi}[\frac{55 Mpa\sqrt{m}}{1.0(200Mpa)}]^2 =0.02407m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5B%5Cfrac%7B55%20Mpa%5Csqrt%7Bm%7D%7D%7B1.0%28200Mpa%29%7D%5D%5E2%20%3D0.02407m)
3) Final solution
So the minimum length of a surface crack that will lead to fracture, would be 24.07 mm or more.
Answer:

Explanation:
The water enters to the pump as saturated liquid and equation is modelled after the First Law of Thermodynamics:




The boiler heats the water to the state of saturated vapor, whose specific enthalpy is:

The rate of heat transfer in the boiler is:


Answer:
8.85 Ω
Explanation:
Resistance of a wire is:
R = ρL/A
where ρ is resistivity of the material,
L is the length of the wire,
and A is the cross sectional area.
For a round wire, A = πr² = ¼πd².
For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.
Given L = 500 ft and d = 0.03 in = 0.0025 ft:
R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)
R = 8.85 Ω
Answer:
Explanation:
Since there are six points, the minimum distance from all points would be the centroid of polygon formed by A,B,C,D,E,F
To find the coordinates of centroid of a polygon we use the following formula. Let A be area of the polygon.
where i=1 to N-1 and N=6
A area of the polygon can be found by the following formula
where i=1 to N-1
![A=\frac{1}{2}[ (x_{1} y_{2} -x_{2} y_{1})+ (x_{2} y_{3} -x_{3} y_{2})+(x_{3} y_{4} -x_{4} y_{3})+(x_{4} y_{5} -x_{5} y_{4})+(x_{5} y_{6} -x_{6} y_{5})]](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B1%7D%7B2%7D%5B%20%28x_%7B1%7D%20%20y_%7B2%7D%20-x_%7B2%7D%20%20y_%7B1%7D%29%2B%20%28x_%7B2%7D%20%20y_%7B3%7D%20-x_%7B3%7D%20%20y_%7B2%7D%29%2B%28x_%7B3%7D%20%20y_%7B4%7D%20-x_%7B4%7D%20%20y_%7B3%7D%29%2B%28x_%7B4%7D%20%20y_%7B5%7D%20-x_%7B5%7D%20%20y_%7B4%7D%29%2B%28x_%7B5%7D%20%20y_%7B6%7D%20-x_%7B6%7D%20%20y_%7B5%7D%29%5D)
A=0.5[(20×25 -25×15) +(25×32 -13×25)+(13×21 -4×32)+(4×8 -18×21)+(18×14 -25×8)
A=225.5 miles²
Now putting the value of area in Cx and Cy
![C_{x} =\frac{1}{6A}[ [(x_{1}+x_{2})(x_{1} y_{2} -x_{2} y_{1})]+ [(x_{2}+x_{3})(x_{2} y_{3} -x_{3} y_{2})]+[(x_{3}+x_{4})(x_{3} y_{4} -x_{4} y_{3})]+[(x_{4}+x_{5})(x_{4} y_{5} -x_{5} y_{4})]+[(x_{5}+x_{6})(x_{5} y_{6} -x_{6} y_{5})]]](https://tex.z-dn.net/?f=C_%7Bx%7D%20%3D%5Cfrac%7B1%7D%7B6A%7D%5B%20%5B%28x_%7B1%7D%2Bx_%7B2%7D%29%28x_%7B1%7D%20%20y_%7B2%7D%20-x_%7B2%7D%20%20y_%7B1%7D%29%5D%2B%20%5B%28x_%7B2%7D%2Bx_%7B3%7D%29%28x_%7B2%7D%20%20y_%7B3%7D%20-x_%7B3%7D%20%20y_%7B2%7D%29%5D%2B%5B%28x_%7B3%7D%2Bx_%7B4%7D%29%28x_%7B3%7D%20%20y_%7B4%7D%20-x_%7B4%7D%20%20y_%7B3%7D%29%5D%2B%5B%28x_%7B4%7D%2Bx_%7B5%7D%29%28x_%7B4%7D%20%20y_%7B5%7D%20-x_%7B5%7D%20%20y_%7B4%7D%29%5D%2B%5B%28x_%7B5%7D%2Bx_%7B6%7D%29%28x_%7B5%7D%20%20y_%7B6%7D%20-x_%7B6%7D%20%20y_%7B5%7D%29%5D%5D)
putting the values of x's and y's you will get

For Cy
![C_{y} =\frac{1}{6A}[ [(y_{1}+y_{2})(x_{1} y_{2} -x_{2} y_{1})]+ [(y_{2}+y_{3})(x_{2} y_{3} -x_{3} y_{2})]+[(y_{3}+y_{4})(x_{3} y_{4} -x_{4} y_{3})]+[(y_{4}+y_{5})(x_{4} y_{5} -x_{5} y_{4})]+[(y_{5}+y_{6})(x_{5} y_{6} -x_{6} y_{5})]]](https://tex.z-dn.net/?f=C_%7By%7D%20%3D%5Cfrac%7B1%7D%7B6A%7D%5B%20%5B%28y_%7B1%7D%2By_%7B2%7D%29%28x_%7B1%7D%20%20y_%7B2%7D%20-x_%7B2%7D%20%20y_%7B1%7D%29%5D%2B%20%5B%28y_%7B2%7D%2By_%7B3%7D%29%28x_%7B2%7D%20%20y_%7B3%7D%20-x_%7B3%7D%20%20y_%7B2%7D%29%5D%2B%5B%28y_%7B3%7D%2By_%7B4%7D%29%28x_%7B3%7D%20%20y_%7B4%7D%20-x_%7B4%7D%20%20y_%7B3%7D%29%5D%2B%5B%28y_%7B4%7D%2By_%7B5%7D%29%28x_%7B4%7D%20%20y_%7B5%7D%20-x_%7B5%7D%20%20y_%7B4%7D%29%5D%2B%5B%28y_%7B5%7D%2By_%7B6%7D%29%28x_%7B5%7D%20%20y_%7B6%7D%20-x_%7B6%7D%20%20y_%7B5%7D%29%5D%5D)
putting the values of x's and y's you will get

So coordinates for the fire station should be (15.36,22.55)