Fundamental frequency,
f=v2l=T/μ−−−−√2l
=(50)/0.1×10−3/10−22×0.6−−−−−−−−−−−−−−−−−−−√
=58.96Hz
Let, n th harmonic is the hightest frequency, then
(58.93)n = 20000
∴N=339.38
Hence, 339 is the highest frequency.
∴fmax=(339)(58.93)Hz=19977Hz.
<h3>
What is frequency?</h3>
In physics, frequency is the number of waves that pass a given point in a unit of time as well as the number of cycles or vibrations that a body in periodic motion experiences in a unit of time. After moving through a sequence of situations or locations and then returning to its initial position, a body in periodic motion is said to have experienced one cycle or one vibration. See also simple harmonic motion and angular velocity.
learn more about frequency refer:
brainly.com/question/254161
#SPJ4
Answer:
2000 nickels
Explanation:
One way to solve proportionality problems, direct and inverse: the simple 3 rule.
If the relationship between the magnitudes is direct (when one magnitude increases so does the other), the simple direct rule of three must be applied.
On the contrary, if the relationship between the magnitudes is inverse (when one magnitude increases the other decreases) the rule of three simple inverse applies.
The simple 3 rule is an operation that helps us quickly solve proportionality problems, both direct and inverse.
To make a simple rule of three we need 3 data: two magnitudes proportional to each other, and a third magnitude. From these, we will find out the fourth term of proportionality.
In the simple three rule, therefore, the proportionality relationship between two known values A and B is established, and knowing a third value C, a fourth value D is calculated.
A -> B
C -> D
Calculation
1 nickel --> 5 g
X? nickel --> 10000g
X = (10000 g * 1 nickel) / 5 g
X = 2000 nickels
1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].
2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].
3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].
4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].
Answer:
True
Explanation:
The different sides control the opposite side of the human body