1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VMariaS [17]
3 years ago
12

Light is incident on a piece of glass in air at an angle of 33 degrees from the normal. If the index of refraction of the glass

is 1.5, what is the angle in degrees that the refracted ray makes with the normal?

Physics
1 answer:
lilavasa [31]3 years ago
4 0
About 21 to 22 degrees 

as below

You might be interested in
A mortar is like a small cannon that launches shells at steep angles. A mortar crew is positioned near the top of a steep hill.
Elena-2011 [213]

1) Distance down the hill: 1752 ft (534 m)

2) Time of flight of the shell: 12.9 s

3) Final speed: 326.8 ft/s (99.6 m/s)

Explanation:

1)

The motion of the shell is a projectile motion, so we  can analyze separately its vertical motion and its horizontal motion.

The vertical motion of the shell is a uniformly accelerated motion, so the vertical position is given by the following equation:

y=(u sin \theta)t-\frac{1}{2}gt^2 (1)

where:

u sin \theta is the initial vertical velocity of the shell, with u=156 ft/s and \theta=49.0^{\circ}

g=32 ft/s^2 is the acceleration of gravity

At the same time, the horizontal motion of the shell is a uniform motion, so the horizontal position of the shell at time t is given by the equation

x=(ucos \theta)t

where u cos \theta is the initial horizontal velocity of the shell.

We can re-write this last equation as

t=\frac{x}{u cos \theta} (1b)

And substituting into (1),

y=xtan\theta -\frac{1}{2}gt^2 (2)

where we have choosen the top of the hill (starting position of the shell) as origin (0,0).

We also know that the hill goes down with a slope of \alpha=-41.0^{\circ} from the horizontal, so we can write the position (x,y) of the hill as

y=x tan \alpha (3)

Therefore, the shell hits the slope of the hill when they have same x and y coordinates, so when (2)=(3):

xtan\alpha = xtan \theta - \frac{1}{2}gt^2

Substituting (1b) into this equation,

xtan \alpha = x tan \theta - \frac{1}{2}g(\frac{x}{ucos \theta})^2\\x (tan \theta - tan \alpha)-\frac{g}{2u^2 cos^2 \theta} x^2=0\\x(tan \theta - tan \alpha-\frac{gx}{2u^2 cos^2 \theta})=0

Which has 2 solutions:

x = 0 (origin)

and

tan \theta - tan \alpha=\frac{gx}{2u^2 cos^2 \theta}=0\\x=(tan \theta - tan \alpha) \frac{2u^2 cos^2\theta}{g}=1322 ft

So, the distance d down the hill at which the shell strikes the hill is

d=\frac{x}{cos \alpha}=\frac{1322}{cos(-41.0^{\circ})}=1752 ft=534 m

2)

In order to find how long the mortar shell remain in the air, we can use the equation:

t=\frac{x}{u cos \theta}

where:

x = 1322 ft is the final position of the shell when it strikes the hill

u=156 ft/s is the initial velocity of the shell

\theta=49.0^{\circ} is the angle of projection of the shell

Substituting these values into the equation, we find the time of flight of the shell:

t=\frac{1322}{(156)(cos 49^{\circ})}=12.9 s

3)

In order to find the final speed of the shell, we have to compute its horizontal and vertical velocity first.

The horizontal component of the velocity is constant and it is

v_x = u cos \theta =(156)(cos 49^{\circ})=102.3 ft/s

Instead, the vertical component of the velocity is given by

v_y=usin \theta -gt

And substituting at t = 12.9 s (time at which the shell strikes the hill),

v_y=(156)(cos 49^{\circ})-(32)(12.9)=-310.4ft/s

Therefore, the  final speed of the shell is:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(102.3)^2+(-310.4)^2}=326.8 ft/s=99.6 m/s

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

5 0
3 years ago
A copper wire and a tungsten wire of the same length have the same resistance. What is the ratio of the diameter of the copper w
spayn [35]

Answer:

Therefore the ratio of diameter of the copper to that of the tungsten is

\sqrt{3} :\sqrt{10}

Explanation:

Resistance: Resistance is defined to the ratio of voltage to the electricity.

The resistance of a wire is

  1. directly proportional to its length i.eR\propto l
  2. inversely proportional to its cross section area i.eR\propto \frac{1}{A}

Therefore

R=\rho\frac{l}{A}

ρ is the resistivity.

The unit of resistance is ohm (Ω).

The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m

The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m

For copper:

A=\pi r_1^2 =\pi (\frac{d_1}{2} )^2

R_1=\rho_1\frac{l_1}{\pi(\frac{d_1}{2})^2 }

\Rightarrow (\frac{d_1}{2})^2=\rho_1\frac{l_1}{\pi R_1 }......(1)

Again for tungsten:

R_2=\rho_2\frac{l_2}{\pi(\frac{d_2}{2})^2 }

\Rightarrow (\frac{d_2}{2})^2=\rho_2\frac{l_2}{\pi R_2 }........(2)

Given that R_1=R_2   and    l_1=l_2

Dividing the equation (1) and (2)

\Rightarrow\frac{ (\frac{d_1}{2})^2}{ (\frac{d_2}{2})^2}=\frac{\rho_1\frac{l_1}{\pi R_1 }}{\rho_2\frac{l_2}{\pi R_2 }}

\Rightarrow( \frac{d_1}{d_2} )^2=\frac{1.68\times 10^{-8}}{5.6\times 10^{-8}}   [since R_1=R_2   and    l_1=l_2]

\Rightarrow( \frac{d_1}{d_2} )=\sqrt{\frac{1.68\times 10^{-8}}{5.6\times 10^{-8}}}

\Rightarrow( \frac{d_1}{d_2} )=\sqrt{\frac{3}{10}}

\Rightarrow d_1:d_2=\sqrt{3} :\sqrt{10}

Therefore the ratio of diameter of the copper to that of the tungsten is

\sqrt{3} :\sqrt{10}

8 0
3 years ago
the Earth exerts a gravitational force of 500 newtons on an object what is the mass of the object in kilograms
MAXImum [283]
Use Newton's second law F = mass * acceleration
In your problem F = 500, and we know gravity is working on it so use a = 9.81
Substitute into the equation
500 = m * 9.81
m = 50.97 kg
7 0
3 years ago
C) A sample of substance of volume 10 cm3 was brought back to Earth from the Moon.
postnew [5]

Answer:

8125

Explanation:

P=0,13 N\\a=1,6 N/kg\\m=P/a=0,13/1,6=0,08125\\V=10(cm)^{3} =10^{-5} meters^{3}  \\p=m/V=0,08125/10^{-5} =0,08125*100000=8125kg/meters^{3}

3 0
3 years ago
What is a small particle of an atom carries a neutral charge?
Sati [7]
<em>It is found, with the positively charge protons in the central nucleus of the atom, while the negatively charges electrons rotate in orbits (Shells) around it.</em>

<em>Electron with a charge of -1</em>

<em>Electron- carries a negative energy </em>
7 0
3 years ago
Other questions:
  • Paco rode his skateboard up a ramp for a distance of 3.8 meters. If the ideal mechanical advantage of the ramp is 2, how far abo
    9·1 answer
  • The model of the atom proposed by Greek philosophers appears similar to the model proposed centuries later by Dalton. What was t
    13·1 answer
  • One-dimensional motion
    9·2 answers
  • Which of the following could classify as a non-essential need according to the hierarchy of needs? A. healthy food B. human cont
    5·1 answer
  • A wind turbine is initially spinning at a constant angular speed. As the wind's strength gradually increases, the turbine experi
    10·1 answer
  • A high-diver of mass 59.8 kg jumps off a board 10.0 m above the water. If, 1.00 s after entering the water his downward motion i
    7·1 answer
  • A tuning fork with a frequency of 335 Hz and a tuning fork of unknown frequency produce beats with a frequency of 5.3 when struc
    5·1 answer
  • Free brainlyest. if get thes quston right Devlin recorded the number of days of rain for his town over three months. The bar gra
    14·2 answers
  • Why the unit of power is called derived unit? <br>​
    15·1 answer
  • UCaShoTLLOuuj9D4vqFtTpSQ<br><br> search
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!