There are three general kinds of state balanced budget requirements:
<span>The governor's proposed budget must be balanced (43 states and Puerto Rico).The budget the legislature passes must be balanced (39 states and Puerto Rico).<span>The budget must be balanced at the end of a fiscal year or biennium, so that no deficit can be carried forward (37 states and Puerto Rico).
</span></span><span>Nature of state balanced-budget requirements All the states except Vermont have a legal requirement of a balanced budget. Some are constitutional, some are statutory, and some have been derived by judicial decision from constitutional provisions about state indebtedness that do not, on their face, call for a balanced budget. The General Accounting Office has commented that "some balanced budget requirements are based on interpretations of state constitutions and statutes rather than on an explicit statement that the state must have a balanced budget."
hope that helped, please mark me as brainliest
</span>
Answer:
Both are attractive as well as repulsive.
Explanation:
(Like poles repel, like charges<em> repel</em>; unlike poles attract, unlike charges <em>attract</em>).
Answer:
speed and direction
Explanation:
Acceleration is the rate of change of speed and direction.
Answer:
Changes in the object's momentum (answer D)
Explanation:
A net force will cause an object to change its velocity, and that will affect the object's momentum, which is defined by the product of the object's mass times its velocity.
So, select the last option (D) in the given list.
The initial speed of car A is 15.18 m/s.
Momentum is defined as mass in motion. If there are two objects (the two objects in motion or only one object in motion and the other in stationary) that collide and no other forces work in the system, the law of momentum conservation applies in the system.
p=p'
pa+pb = pa'+pb'
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
- ma = mass of object A (kg) = 1,783 kg
- mb = mass of object B (kg) = 1,600 kg
- va = speed of object A before collides (m/s)
- va' = speed of object A after collides (m/s) = 8 m/s
- vb = speed of object B before collides (m/s) = 0 m/s
- vb' = speed of object B after collides (m/s) = 8 m/s
- p = momentum before collision (Ns)
- p' = momentum after collision (Ns)
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
(1,783×va) + (1,600×0) = (1,783×8) + (1,600×8)
(1,783×va) + 0 = 14,264+12,800
(1,783×va) = 27,064

va = 15.18 m/s
Learn more about The law of momentum conservation here: brainly.com/question/7538238
#SPJ4