is the time taken by the transducer to detect the reflected waves from the metal fragment after they were first emitted
Option C
<u>Explanation:</u>
Given data:
speed, v = 1300 m/s
distance, d = 3.0 cm = 
We need to calculate the time taken by the transducer to detect the reflected waves from the metal fragment after they were first emitted.
As we know, the velocity is the ratio of distance and the time travelled by an object. The equation form is given by,

By applying the given values to the above equation, we get


Answer:
A: They produce a real image.
Explanation:
The images formed on the retina of the eye for a normal visibility must always be real.
Only a real image can be physically projected on any physical object whereas the virtual images are visible due to reflections.
- The nearsightedness is corrected with the help of a concave lens since it is the condition of the eye lens remaining thick and curved to converge the rays entering the eyes after a shorter distance which results in their image formation even before the retinal surface so to initially diverge them a bit so that they converge on the retinal surface and form the image there we use concave lens. Vice-versa of the above justification in the case of farsightedness.
Answer:
calcium carbonate is transformed into calcium sulfate
Explanation:
Limestone stones are formed by calcium carbonate (Ca Co3), when acid rain falls with a little H2SO2, a chemical reaction of the type
Ca Co3 + H2SO4 → CO2 + H2O + CaSo4
Calcium sulfate is much weaker than alatium carbonate, which is why the stone tends to break under its weigh
Answer:
Firstly they are, by design, easy to use in most scientific and engineering calculations; you only ever have to consider multiples of 10. If I’m given a measurement of 3.4 kilometres, I can instantly see that it’s 3′400 metres, or 0.0034 Megametres, or 3′400′000 millimetres. It’s not even necessary to use arithmetic, I just have to remember the definitions of the prefixes (“kilo” is a thousand, “megametre” is a million, “milli” is a thousandth) and shift the decimal point across to the left or the right. This is especially useful when we’re considering areas, speeds, energies, or other things that have multiple units; for instance,
1 metre^2 = (1000millimetre)^2 = 1000000 mm^2.
If we were to do an equivalent conversion in Imperial, we would have
1 mile^2 = (1760 yards)^2
and we immediately have to figure out what the square of 1760 is! However, the fact that SI is based on multiples of 10 has the downside that we can’t consider division by 3, 4, 8, or 12 very easily.
Secondly they are (mostly) defined in terms of things that are (or, that we believe to be) fundamental constants. The second is defined by a certain kind of radiation that comes from a caesium atom. The metre is defined in terms of the second and the speed of light. The kelvin is defined in terms of the triple point of water. The mole is the number of atoms in 12 grams of carbon-12. The candela is defined in terms of the light intensity you get from a very specific light source. The ampere is defined using the Lorentz force between two wires. The only exception is the kilogram, which is still defined by the mass of a very specific lump of metal in a vault in France (we’re still working on a good definition for that one).
Thirdly, most of the Imperial and US customary units are defined in terms of SI. Even if you’re not personally using SI, you are probably using equipment that was designed using SI.
It says: The bigger the distance between objects the smaller the gravity between them.