1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin2010 [14]
3 years ago
6

The amount of energy invested into glycolysis is ____________ atp

Physics
1 answer:
Liono4ka [1.6K]3 years ago
3 0
The amount of energy invested into glycolysis is 2 ATP.


You might be interested in
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
4 years ago
During what era did the French and Indian War occur?
Thepotemich [5.8K]
<span>French and Indian War began in 1754 and ended with the Treaty of Paris in 1763. The war provided Great Britain enormous territorial gains in North America, but disputes over subsequent frontier policy and paying the war’s expenses led to colonial discontent, and ultimately to the American Revolution.</span>
7 0
3 years ago
Read 2 more answers
Explain how tidal forces are causing Earth to slow down.
dybincka [34]

Answer: The tidal forces exerted by the moon are directly associated with the earth's rotation. Due to the strong gravitational pull of the moon, the tidal bulging appears on both the sides on earth and these are region of high tide, and there is gradual rise and fall of sea level.

Because of these tidal effect, the earth is able to rotate only once in each of the orbital period.

6 0
3 years ago
In this experiment, you will use a track, a toy car, and some washers to explore Newton’s first two laws of motion. You will mak
polet [3.4K]

How can we experimentally verify newton's laws?

7 0
4 years ago
Read 2 more answers
to start an avalanche on a mountain slope, an artillery shell is fired with an initial velocity of 290 m/s at 53.0° above the ho
kap26 [50]
So this is easy to calculate when you split the velocity into x and y components. The x component is going to equal cos(53) * 290 and the y component is going to equal sin(53)*290.

The x location therefore is 290*cos(53)*35 = 6108.4m

The y location needs to factor in the downwards acceleration of gravity too, which is 9.81m/s^2. We need the equation dist. = V initial*time + 0.5*acceleration*time^2.

This gives us d=290*sin(53)*35 + (0.5*-9.81*35^2)=2097.5m

So your (x,y) coordinates equals (6108.4, 2097.5)
5 0
3 years ago
Other questions:
  • The parking brake on a 1000 kg Cadillac has failed, and it is rolling slowly, at 1 mph , toward a group of small children. Seein
    9·1 answer
  • Stu wanted to calculate the resistance of a light bulb connected to a 4.0-V battery, with a resulting current of 0.5 A. He used
    12·2 answers
  • Jack pulls a sled across a level field by exerting a force of 110 n at an angle of 30 with the ground. what are the parallel and
    7·2 answers
  • If I move 15ft foward, 15 ft backwards, 15 ft to the right, 15ft to the left where am I?
    7·2 answers
  • Why does a siren have a lower pitch as it moves away from you? A The period of the sound wave is decreased B The amplitude of th
    15·2 answers
  • Are the correct? PLEASE HELP ASAP
    10·2 answers
  • When an object is fully magnetized, all of its magnetic domains will be ?
    8·2 answers
  • Which of the following describes gamma rays?
    9·2 answers
  • M = 15 kg, a = 2 m/s2, F =
    11·1 answer
  • 6. (a) Suppose the earth is revolving round the sun in a circular orbit of radius one b astronomical unit (1.5% 10 km). Find the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!