...the potential energy that you build while going up the hill on the roller coaster could be let go as kinetic energy -- the energy of motion that takes you down the hill of the roller coaster.
Answer:
Given: a projectile of initial launch velocity(V) and launch angle ∅ and no air resistance. At the maximum height, the projectile would have a zero contribution of speed from the vertical component(Vy) Therefore, if we say Vx=Vcos∅ is the only speed the projectile has at the instant of maximum height then we can replace Vx with 1/5V and write 1/5V=Vcos∅. Solving for the the launch angle ∅, gives Inverse Cos(1/5)=78.5 degrees.
Answer:
<h2>2540.16 J</h2>
Explanation:
The gravitational potential energy of a body can be found by using the formula
GPE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 9.8 m/s²
From the question we have
GPE = 72 × 9.8 × 3.6 = 2540.16
We have the final answer as
<h3>2540.16 J</h3>
Hope this helps you
Answer:
speed of white ball is 1.13 m/s and speed of black ball is 2.78 m/s
initial kinetic energy = final kinetic energy

Explanation:
Since there is no external force on the system of two balls so here total momentum of two balls initially must be equal to the total momentum of two balls after collision
So we will have
momentum conservation along x direction

now plug in all values in it

so we have

similarly in Y direction we have

now plug in all values in it

so we have


now from 1st equation we have



so speed of white ball is 1.13 m/s and speed of black ball is 2.78 m/s
Also we know that since this is an elastic collision so here kinetic energy is always conserved to
initial kinetic energy = final kinetic energy


Answer:
r = 6.6 x 10³ m = 6600 m
Explanation:
The potential at a distance from a charged sphere can be given as follows:

where,
r = distance = ?
k = Colomb Constant = 9 x 10⁹ Nm²/C²
q = charge on sphere = 3.3 C
V = potential = 4.5 MV = 4.5 x 10⁶ V
Therefore,

<u>r = 6.6 x 10³ m = 6600 m</u>