Answer:
the rate that the energy of a system is transformed
Explanation:
We can define energy as the capacity or ability to do work. Power is defined as the rate of doing work or the rate at which energy is transformed. It can also be regarded as the time rate of energy transfer. In older physics literature, power is sometimes referred to as activity.
Power is given by energy/time. Its unit is watt which is defined as joule per second. Another popular unit of power is horsepower. 1 horsepower = 746 watts.
Very large magnitude of power is measured in killowats and megawatts.
Equations of motion (EoM) use EoM <span>v2=u2+2ax</span> to establish velocities at positions shown in blue in drawing from EoM v=u+at for final 1 second of flight time, we can say v=u+g(1) <span><span>2gH−−−−√</span>=<span><span>2g1625H</span>−−−−−−√</span>+g</span><span> then, solve for H [in terms of g]
</span>
Answer:
a) and c).
Explanation:
For a complete destructive interference occur, it must be met the following condition relating the wavelength, and the difference in the paths taken by the sound emitted by the sources until arriving to the listening point:
d = |dA- dB| = (2n-1)*(λ/2)
For n= 1, d = λ/2 = 0.25 m, it doesn't meet any of the cases.
For n=2, d= 3*(λ/2) = 0.75 m
In the case a) we have dA = 2.15 m and dB = 3.00 m, so dB-dA = 0.75 m, which means that in the location stated by case a) a complete destructive interference would occur.
For n=3, d= 5*(λ/2) = 5*0.25 m = 1.25 m.
This is just the case c) because we have dA = 3.75 m and dB = 2.50 m, so dA-dB = 1.25 m, which means that in the location stated by case c) a complete destructive interference would occur also.
The remaining cases don't meet the condition stated above, so the statements found to be true are a) and c),
Answer:
1.) 4m
2.) 37 m
3.) 62m
4.) 2.5 s
Explanation:
1.) Given that the
Thinking distance = 1m
Breaking distance = 3m
Stopping distance = breaking distance + thinking distance
Stopping distance = 1 + 3 = 4m
2.) Given that the
Stopping distance = 52 m
Thinking distance = 15m
Breaking distance = 52 - 15 = 37m
3.) The stopping distance = 76m
Thinking distance = 14m
Breaking distance = 76 - 14 = 62m
It take the brakes 62m to slow the car down to a stop.
4.) Given that a lorry travels 28m when stopping from a speed of 4m/s. If its braking distance was 18m, what was the driver’s reaction time?
Thinking = stopping distance - braking distance
Thinking distance = 28 - 18 = 10m
Speed = distance/time
4 = 10/reaction time
Reaction time = 10/4
Reaction time = 2.5 s
5.) Question incomplete
Answer:
Vf= 3.435 m/s
Explanation:
Given:
Initial velocity Vi =0 m/s (starting from Rest position)
θ = 37⁰
Distance S = 1 m
To find: Final Velocity Vf=?
fist we have to find the down slope net acceleration a = g sin θ
a= 9.81 sin 37⁰ = 5.9 m/s²
By 3rd equation of motion
2 a S= Vf² - Vi²
Vf = Square root ( 2 × 5.9 m/s² × 1 + 0 m/s)
Vf = Square root (11.8)
Vf= 3.435 m/s