Answer:
P(bat) = V²r/(R+r)²
Explanation:
Let the resistance of the coil be R
Internal resistance of the battery be r
Emf of the battery = V
Power dissipated in the internal resistance of the battery is normally given as P = I²r
where I is the current flowing in the circuit.
From Ohm's law,
V = I R(eq)
R(eq) = (R + r)
I = V/(R+r)
P = I²r
P = [V/(R+r)]²r
P = V²r/(R+r)²
Hope this Helps!!!
Answer:
The periodic table illustrate some of the elements from Hydrogen to Calcium
Answer:
<h2>
128.61 Watts</h2>
Explanation:
Average power done by the torque is expressed as the ratio of the workdone by the toque to time.
Power = Workdone by torque/time
Workdone by the torque =
= 
I is the rotational inertia = 16kgm²



To get the angular acceleration, we will use the formula;


Workdone by the torque = 16 * 1.28 * 12.56
Workdone by the torque = 257.23 Joules
Average power done by the torque = Workdone by torque/time
= 257.23/2.0
= 128.61 Watts
Answer:
There are six main components, or parts, of weather. They are <u>temperature, atmospheric pressure, wind, humidity, precipitation, and cloudiness</u>. Together, these components describe the weather at any given time. These changing components, along with the knowledge of atmospheric processes, help meteorologists—scientists who study weather—forecast what the weather will be in the near future.
Given : A ball of mass 40 g moving at a velocity of 4 m/s.
To find : Calculate the kinetic energy in joules ?
Solution :
The kinetic energy formula is given by,
where, v is the velocity v=4 m/s
m is the mass m=40 g
Convert g into kg,
Substitute the values,
Therefore, the kinetic energy is 0.32 Joules.