Answer:
3A
Explanation:
Using Ohms law U=I×R solve for I by I=U/R
A 260 ft (79.25m) length of size 4 AWG uncoated copper wire operating at a temperature of 75°c has a resistance of 0.0792 ohm.
Explanation:
From the given data the area of size 4 AWG of the code is 21.2 mm², then K is the Resistivity of the material at 75°c is taken as ( 0.0214 ohm mm²/m ).
To find the resistance of 260 ft (79.25 m) of size 4 AWG,
R= K * L/ A
K = 0.0214 ohm mm²/m
L = 79.25 m
A = 21.2 mm²
R = 0.0214 * 
= 0.0214 * 3.738
= 0.0792 ohm.
Thus the resistance of uncoated copper wire is 0.0792 ohm
Answer:
Assumption:
1. The kinetic and potential energy changes are negligible
2. The cylinder is well insulated and thus heat transfer is negligible.
3. The thermal energy stored in the cylinder itself is negligible.
4. The process is stated to be reversible
Analysis:
a. This is reversible adiabatic(i.e isentropic) process and thus 
From the refrigerant table A11-A13

sat vapor
m=

b.) We take the content of the cylinder as the sysytem.
This is a closed system since no mass leaves or enters.
Hence, the energy balance for adiabatic closed system can be expressed as:
ΔE
ΔU
)
workdone during the isentropic process
=5.8491(246.82-219.9)
=5.8491(26.91)
=157.3993
=157.4kJ