From the calculation, the molar mass of the solution is 141 g/mol.
<h3>What is the molar mass?</h3>
We know that;
ΔT = K m i
K = the freezing constant
m = molality of the solution
i = the Van't Hoft factor
The molality of the solution is obtained from;
m = ΔT/K i
m = 3.89/5.12 * 1
m = 0.76 m
Now;
0.76 = 26.7 /MM/0.250
0.76 = 26.7 /0.250MM
0.76 * 0.250MM = 26.7
MM= 26.7/0.76 * 0.250
MM = 141 g/mol
Learn more about molar mass:brainly.com/question/12127540?
#SPJ12
The Lewis formula refers to a diagram showing the distribution of electrones and in case of a molecule it also shows the bonds.
The structural formula on the other hand is a representation of the molecular structure that shows all the atoms that form the molecule, arranged in a three dimentional space,
In this case we have the hydrogen ion, which is the simpliest case we can have.
Hydrogen ion is the hydrogen atom possitively charged as it has lost his electron. Therefore the structural formula is simply the following:
The Lewis formula is also very simple as this ion has no electrons and has no bonding to other atoms:
Answer:
Heat travels faster in solids.
Heat travels slower in gases.
Explanation:
Answer:
She can add 380 g of salt to 1 L of hot water (75 °C) and stir until all the salt dissolves. Then, she can carefully cool the solution to room temperature.
Explanation:
A supersaturated solution contains more salt than it can normally hold at a given temperature.
A saturated solution at 25 °C contains 360 g of salt per litre, and water at 70 °C can hold more salt.
Yasmin can dissolve 380 g of salt in 1 L of water at 70 °C. Then she can carefully cool the solution to 25 °C, and she will have a supersaturated solution.
B and D are wrong. The most salt that will dissolve at 25 °C is 360 g. She will have a saturated solution.
C is wrong. Only 356 g of salt will dissolve at 5 °C, so that's what Yasmin will have in her solution at 25 °C. She will have a dilute solution.
When connectors are marked with a combination of metals,
it can be used as a connector of one of the metals or an alloy of the two
metals. So in this case, since the marking is “Al – Cu” where Al is aluminium and
Cu is copper, therefore the answer is:
<span>Yes, it is suitable for use with copper, copper-clad
aluminum, and aluminum conductors.</span>