Answer:

Explanation:
Since we are given the mass, specific heat, and change in temperature, we should use this formula for heat:

The substance's mass is 450.0 grams, the specific heat is 1.264 J/g°C, and the change in temperature is 7.1 °C.

Substitute the values into the formula.

Multiply the first 2 values together. The grams will cancel out.

Multiply again. This time, the degrees Celsius cancel out.

<u>4038.48 Joules</u> of heat energy are released.
Answer:
you must go to jones im doing the same test
Explanation:
Answer:
Climate change will make plants—and us—thirstier. The combined effects of increased CO2 levels and warmer temperatures will increase water consumption by vegetation. That will lead to water declines in streams and rivers like the Ashepoo River in South Carolina
Explanation:
Answer: The pH at the equivalence point for the titration will be 0.65.
Solution:
Let the concentration of
be x
Initial concentration of
, c = 0.230 M

at eq'm c-x x x
Expression of
:
![K_b=\frac{[CH_3NH_3^+][+OH^-]}{[CH_3NH_2]}=\frac{x\times x}{c-x}=\frac{x^2}{c-x}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5B%2BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D%3D%5Cfrac%7Bx%5Ctimes%20x%7D%7Bc-x%7D%3D%5Cfrac%7Bx%5E2%7D%7Bc-x%7D)
Since ,methyl-amine is a weak base,c>>x so
.

Solving for x, we get:

Given, HCl with 0.230 M , it dissociates fully in water which means
= 0.230 M
will result in neutral solution, since ![[OH^-]](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3C%5BH%5E%2B%5D)
Remaining
after neutralizing
ions
![[H^+]_{\text{left in solution}}=[H^+]-[OH^-]=0.230-1.07\times 10^{-2}=0.2193 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D_%7B%5Ctext%7Bleft%20in%20solution%7D%7D%3D%5BH%5E%2B%5D-%5BOH%5E-%5D%3D0.230-1.07%5Ctimes%2010%5E%7B-2%7D%3D0.2193%20M)
![pH=-log{[H^+]_{\text{left in solution}}=-log(0.2193)=0.65](https://tex.z-dn.net/?f=pH%3D-log%7B%5BH%5E%2B%5D_%7B%5Ctext%7Bleft%20in%20solution%7D%7D%3D-log%280.2193%29%3D0.65)
The pH at the equivalence point for the titration will be 0.65.