Answer:
52.9 N, 364.7 N
Explanation:
First of all, we need to resolve both forces along the x- and y- direction. We have:
- Force A (178 N)

- Force B (259 N)

So the x- and y- component of the total force acting on the block are:

The work done by
along the given path <em>C</em> from <em>A</em> to <em>B</em> is given by the line integral,

I assume the path itself is a line segment, which can be parameterized by

with 0 ≤ <em>t</em> ≤ 1. Then the work performed by <em>F</em> along <em>C</em> is
![\displaystyle \int_0^1 \left(6x(t)^3\,\vec\imath-4y(t)\,\vec\jmath\right)\cdot\frac{\mathrm d}{\mathrm dt}\left[x(t)\,\vec\imath + y(t)\,\vec\jmath\right]\,\mathrm dt \\\\ = \int_0^1 (288(3t-1)^3-8(2t+5)) \,\mathrm dt = \boxed{312}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cleft%286x%28t%29%5E3%5C%2C%5Cvec%5Cimath-4y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%29%5Ccdot%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5Bx%28t%29%5C%2C%5Cvec%5Cimath%20%2B%20y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%5D%5C%2C%5Cmathrm%20dt%20%5C%5C%5C%5C%20%3D%20%5Cint_0%5E1%20%28288%283t-1%29%5E3-8%282t%2B5%29%29%20%5C%2C%5Cmathrm%20dt%20%3D%20%5Cboxed%7B312%7D)
Answer:
(A) Distance will be equal to 1.75 km
(B) Displacement will be equal to 1.114 km
Explanation:
We have given circumference of the circular track = 3.5 km
Circumference is given by 
r = 0.557 km
(a) It is given that car travels from southernmost point to the northernmost point.
For this car have to travel the distance equal to semi perimeter of the circular track
So distance will be equal to 
(b) If car go along the diameter of the circular track then it will also go from southernmost point to the northernmost point. and it will be equal to diameter of the track
So displacement will be equal to d = 2×0.557 = 1.114 m
Answer:
Explanation:
This is an application of Newton's second Law.
Formula
F = m * a
F = 300 N
m = 100 kg
a = ?
F = m * a
300N = 100 kg * a Divide by 100
300N/100kg = a
a = 3 m/sec^2