Answer:
pahingi po ng pic pls para masagutang kopo iyan
Answer:

Explanation:
As we know that EMF is induced in a closed conducting loop if the flux linked with the loop is changing with time
So we can say

now we have

here since magnetic field is constant so we have

now we have


now we have


Adults. 18years olds and older were affected because back then only 21 years olds and older could vote but the 26th amendment changed that
<span>118 C
The Clausius-Clapeyron equation is useful in calculating the boiling point of a liquid at various pressures. It is:
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
where
Tb = Temperature boiling
R = Ideal Gas Constant (8.3144598 J/(K*mol) )
P = Pressure of interest
Hvap = Heat of vaporization of the liquid
T0, P0 = Temperature and pressure at a known point.
The temperatures are absolute temperatures.
We know that water boils at 100C at 14.7 psi. Yes, it's ugly to be mixing metric and imperial units like that. But since we're only interested in relative pressure differences, it's safe enough. So
P0 = 14.7
P = 14.7 + 12.3 = 27
T0 = 100 + 273.15 = 373.15
And for water, the heat of vaporization per mole is 40660 J/mol
Let's substitute the known values and calculate.
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
Tb = 1/(1/373.15 K - 8.3144598 J/(K*mol) ln(27/14.7)/40660 J/mol)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K ln(1.836734694)/40660)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K 0.607989372/40660)
Tb = 1/(0.002679887 1/K - 5.055103194 1/K /40660)
Tb = 1/(0.002679887 1/K - 0.000124326 1/K)
Tb = 1/(0.002555561 1/K)
Tb = 391.3034763 K
Tb = 391.3034763 K - 273.15
Tb = 118.1534763 C
Rounding to 3 significant figures gives 118 C</span>
Answer:
Take whatever you weigh in pounds and divide by 2.205.
Explanation:
Because weight is a measure of the force you exert on the earth, with some simple manipulation of Newton's second law we can get your mass in kilograms. 2.205 is just a nice constant that does that for you, but the more in-depth version is that
F = ma
The equation for weight is thus
W = mg, where W is your weight in pounds, m is your mass, and g is the acceleration due to gravity (9.80 m/s^2)
Thus, your mass in kilograms is m = W / g.