Here when an object is placed on the level floor then in that case there are two forces on the object
1). Weight of object downwards (mg)
2). Normal force due to floor which will counterbalance the weight (N)
so when no force is applied on the box at that time normal force is counter balanced by weight.
Now here it is given that A person tried to lift the box upwards
So now there are two forces on the box
1). Applied force of person
2). Normal force due to ground
So now these two forces will counter balance the weight of the crate
So we can write an equation for force balance like
given that
here
m = 30 kg and
g = acceleration due to gravity = 10 m/s^2
now from above equation
So force applied by the person must be 150 N
Answer:
2 in front of water and 1 in front of oxygen
Explanation:
This question is describing balancing a chemical reaction. A balanced chemical reaction has the same number of atoms of each elements on both the reactant and product side. According to the question, the reactants contains 4 atoms of oxygen. The reactants give rise to water (H20) and O2 in the products side.
This reaction is most likely the decomposition of hydrogen peroxide (H2O2) as follows:
H2O2 (l) ----> H2O (l) + O2(g)
Based on the description, H2O2 will be 2H2O2 as it is said to contain four atoms of oxygen. This means that, in order to have a balanced equation, we must place coefficient 2 in front of water and coefficient 1 in front of oxygen. That is;
2H2O2 (l) ----> 2H2O (l) + O2(g)
Answer:
Multiply the air pressure by the area of the tabletop.
Explanation:
The relationship between pressure, force and area is given by:
where in this case, p is the air pressure, F is the force exerted and A the area of the tabletop. By re-arranging the equation, we can solve for F, the force exerted:
So, the correct answer is:
The force exerted on the tabletop can be found by multiplying the air pressure by the area of the tabletop.