Answer:
9.4 m/s
Explanation:
According to the work-energy theorem, the work done by external forces on a system is equal to the change in kinetic energy of the system.
Therefore we can write:

where in this case:
W = -36,733 J is the work done by the parachute (negative because it is opposite to the motion)
is the initial kinetic energy of the car
is the final kinetic energy
Solving,

The final kinetic energy of the car can be written as

where
m = 661 kg is its mass
v is its final speed
Solving for v,

Answer:C
Explanation:
Given
mass
is at
mark
mass
is at
mark
Scale is Pivoted at 
For scale to be in equilibrium net torque must be equal to zero
Taking ACW as positive thus


Therefore a net torque of 0.04 g is required in CW sense which a mass
can provide at a distance of
from pivot


therefore in meter stick it is at a distance of 
s=600 m
t=12 s
s=0.5*a*t² (initial speed V0=0)
a=(2*s)/t²
a=(2*600)/12²
a≈8.33 m/s²
L= s(t2=12s)-s(t1=11s) -> (distance during the twelfth second)
L=0.5*a*(t2²-t1²)
L=0.5*((2*s)/t²)*(t2²-t1²)
L=0.5*((2*600)/12²)*(12²-11²)
L ≈ 95.83 m
Answer:B
Explanation:
Given
speed of car 
mass of clump 
Radius of car tire 
Since the tire is rotating about axle so a centripetal force is acting constantly on each particle towards the center of tire.
Centripetal force is given by

where 



(inward)