0.000679 kilometer yeeeeeeeeeeeeeeew
Answer: If both gases undergo the same entropy then more heat is added to gas a because the entropy of the gas a is less than the entropy of the gas b.
Explanation:
Entropy is defined as the degree of randomness. When the temperature of the gas increases then the entropy of gas also increases.
In the given problem, Quantity a of an ideal gas is at absolute temperature t, and a second quantity b of the same gas is at absolute temperature 2t.
Heat is added to each gas, and both gases are allowed to expand isothermally. It means that the volume is constant during this process.
If both gases undergo the same entropy then more heat is added to gas a because the entropy of the gas a is less than the entropy of the gas b. If the heat is added then there will be more entropy.
For many solids dissolved in liquid water, the solubility increases with temperature. The increase in kinetic energy that comes with higher temperatures allows the solvent molecules to more effectively break apart the solute molecules that are held together by intermolecular attractions.
Based on the ideal gas equation, the pressure (P), volume (V) and temperature (T) corresponding to n moles of an ideal gas are related as:
PV = nRT
where R = gas constant
Under conditions of constant pressure and number of moles:
The volume is directly proportional to the pressure. Therefore, as the temperature drops the volume will also decrease.
V α T
This is also known as the Charles Law.