The equation for potential energy is denoted as;
Pe = mgh,
where m = the mass, g = acceleration due to gravity, and h = vertical height of the apple. We are given the units for everything but height, which is also what we are solving for. We can then algebraically rearrange our initial equation to solve for h;
h = (Pe)/(mg)
Plug in your given units, and solve!
Post-check:
h = Pe/mg
h = 175J/(0.36g)(-9.81m/s^2)
h = appr. 49.5 meters
Note: Potential energy is a vector quantity; the displacement of the apple will be a negative number, but the distance itself, a scalar quantity, will be the absolute value of that.
To solve this problem it is necessary to apply the concepts related to the capacitance in the disks, the difference of the potential and the load in the disc.
The capacitance can be expressed in terms of the Area, the permeability constant and the diameter:

Where,
= Permeability constant
A = Cross-sectional Area
d = Diameter
Potential difference between the two disks,
V = Ed
Where,
E = Electric field
d = diameter
Q = Charge on the disk equal to 
Through the value found and the expression given for capacitance and potential, we can define the electric charge as





Re-arranging the equation to find the diameter of the disks, the equation will be:

Replacing,


Therefore the diameter of the disks is 0.03m
No. The moon always keeps the same side facing us. Its rotation and revolution periods are equal.
There are none on the list you included with your question.