Answer:
a. Temperatures increase can change a solid to a liquid, but cannot change a liquid to a solid
b. The particles in a solid are much closer together than the particles in a liquid.
Explanation:
Any material expands when heated and contracts when cooled. So, when a body is heated to a particular temperature, it starts melting and changes into a liquid.
As the material expands the distance between the atoms or molecules increases and it will become a liquid. So it can move around the material. It doesn't become solid on further heating. But water is an exception where it contracts when heated from 0° to 4° C.
In solids, these atoms or molecules are closely packed. It is rigidly fixed.
The solid, as well as the liquid, has a definite volume, but the liquid does not have a definite shape.
<span>e=ca{\displaystyle e={\frac {c}{a}}}.</span>
Angling of the focal track of the anode to create a large actual focal spot and a smaller effective focal spot describes the line focus principle
<h3>
What is the line focus principle?</h3>
The line focus principle states that as the anode angle is reduced, the actual focal spot also becomes small but the heat loading is increased.
It also explains the relationship between the anode surface and the effective focal spot size.
As a result of this, by angling the target, effective area of the target is made much smaller that the actual area of electron interaction.
Hence, angling of the focal track of the anode to create a large actual focal spot and a smaller effective focal spot describes the line focus principle.
Learn more about line focus principle here:
#SPJ1
Answer:
A. The electron will begin to move along the axis, towards the centre and the instantaneous velocity because the force acting on it depends largely on acceleration and x until it reaches maximum velocity at centre.
B. Veloctiy (Vb) = 1.66m/s
Explanation:
Given the following data
x(a) = 0.3m
x(b) = 0
q = 1.6×10^-19
Q = 24nc
r = 0.15m
Required: the motion of the electron and the velocity (Vb)
1. At point A the electron will begin to move along the axis from point A to point B, the magnitude of the electric field will change while moving which depends on that and this will produce instantaneous force which will later change and the acceleration will change too while moving, the velocity would reach maximum value at point B
2. Potential energy and kinetic energy are given by
U(a) + K(a) = U(b) + K(b). . .1
Initial P.E and K.E are given as
U(a) = kQ/√x²(a) + a2
By substitution, we have
U(a) = 9×10^9 × (-1.9×10^-19)×24×10^-9/√(0.15)²+(0.3²)
U(a) = -1.03×10^-16
Final P.E and K.E are given as
U(b) = KQ/√x²(b) + a2
By substitution, we have
U(b) = 9×10^9×(-1.9×10^-19)×24×10^-9/√(0.15)²+(0)²
U(b) = -2.3×10^16
3. By substitution into equation 1 becomes
-1.03×10^-6 - 2.3×10^-16 + MV²(b)/2
V(b) = √2×1.27×10^-16/9.1×10^31
V(b) = 1.66×10^7m/s
Complete Question
the maximum force a pilot can stand is about seven times his weight. what is the minimum radius of curvature that a jet plane's pilot, pulling out of a vertical dive, can tolerate at a speed of 250m/s?
Answer:
The value is 
Explanation:
From the question we are told that
The weight of the pilot is 
The maximum force a pilot can withstand is 
The speed is
Generally the centripetal force acting on the pilot is equal to the net force acting on the pilot i.e

Here N is the normal force acting on the pilot
Now

So
=> 
=> 
=> 