Answer:
Re=160ohm
Explanation:
Step#1
Rt=R1+R2 ( because both are in series)
Rt=(100+220 ) ohm
Rt=320 ohm
Step#2
Rt and R3 are parallel so,
Re= (Rt× R3) ÷ (Rt+R3)
Re= (320×320)÷( 320+320)
Re = 102,400÷ 640
Re=160ohm
Answer:
The magnetic field at a distance of 19.8 cm from the wire is 1.591 mT
Explanation:
Given;
first magnetic field at first distance, B₁ = 2.50 mT
first distance, r₁ = 12.6 cm = 0.126 m
Second magnetic field at Second distance, B₂ = ?
Second distance, r₂ = ?
Magnetic field for a straight wire is given as;

Where:
μ is permeability
B is magnetic field
I is current flowing in the wire
r distance to the wire

Therefore, the magnetic field at a distance of 19.8 cm from the wire is 1.591 mT
The acceleration due to gravity (g) on this planet is 39.44 m/s²
<h3>What is solar system?</h3>
Solar system consists of all the planets and the most importantly the center of the solar system is Sun.
Given is an unknown planet in the outer-reaches of the solar system, a pendulum with a 12 g bob and a string length of 4 m oscillates with a period of 2 seconds.
The time period of the pendulum is
T = 2π √l/g
Squaring both sides, we get
l/g = T² / 4π²
g = 4π²l/ T²
Substitute Time period T = 2s and length l = 4m, we get
g = 4π²x 4/ 2²
g =39.44 m/s²
Thus, the acceleration due to gravity on this planet is 39.44 m/s²
Learn more about solar system.
brainly.com/question/12075871
#SPJ1
Answer:
The correct option is B
Explanation:
Although, it is common knowledge that in an electric field, unlike charges attract and like charges repel. However, to build up an electric potential, a positive charge is brought close to another positive charge - this causes work done to be changed to electric potential energy and stored in the electric field.
It should however be noted that when a negative charge is moved away from a positive charge, the negative charge gains electric potential energy.
Answer:
B. Both electric fields and forces ...
Explanation: