Force = mass × accelaration
Force = 0.25Kg × 196 m/s²
Force = 49 Newtons
Answer:
The velocity of the truck after this elastic collision is 15.7 m/s
Explanation:
It is given that,
Mass of the car, 
Mass of the truck, 
Initial velocity of the car,
Initial velocity of the truck, u₂ = 0
After the collision the velocity of the car is, v₁ = -11 m/s
Let v₂ is the velocity of the truck after this elastic collision. Using the conservation of momentum as :

So, the velocity of the truck after this elastic collision is 15.7 m/s. Hence, the correct option is (c).
Answer: 53 dal
Explanation: 5.3x10=53, to get dal you have to multiply by 10 to get 5.3x10=53.
Hope this helped! Please mark Brainliest!
A pipe's length is equal to 1⁄2 of the wavelength of the sound waves produced by a tuning fork vibrating over one end of the pipe that's open to the air at both ends.
Answer:
a) Height of the antenna (in m) for a radio station broadcasting at 604 kHz = 124.17 m
b)Height of the antenna (in m) for radio stations broadcasting at 1,710 kHz =43.86 m
Explanation:
(a) Radiowave wavelength= λ = c/f
As we know, Radiowave speed in the air = c = 3 x 10^8 m/s
f = frequency = 604 kHz = 604 x 10^3 Hz
Hence, wavelength = (3x10^8/604x10^3) m
λ
= 496.69 m
So the height of the antenna BROADCASTING AT 604 kHz = λ /4 = (496.69/4) m
= 124.17 m
(b) As we know , f = 1710 kHz = 1710 x 10^3 Hz (1kHZ = 1000 Hz)
Hence, wavelength = λ = (3 x 10^8/1710 x 10^3) m
λ= 175.44 m
So, height of the antenna = λ /4 = (175.44/4) m
= 43.86 m