Answer:
Percent yield = 57.8 %
Theoretical yield = 11.781 g
Explanation:
Given data:
Mass of CaO produced = 6.81 g
Mass of CaCO₃ react = 20.7 g
Theoretical yield = ?
Percent yield = ?
Solution:
Chemical equation:
CaCO₃ → CaO + CO₂
Number of moles of CaCO₃ :
Number of moles = mass/molar mass
Number of moles = 20.7 g/ 100.1 g/mol
Number of moles = 0.21 mol
Now we will compare the moles of CaCO₃ with CaO.
CaCO₃ : CaO
1 : 1
0.21 : 0.21
Theoretical yield of CaO:
Mass = number of moles × molar mass
Mass = 0.21 mol × 56.1 g/mol
Mass = 11.781 g
Percent yield:
Percent yield = ( actual yield / theoretical yield ) × 100
Percent yield = (6.81 g/ 11.781 g) × 100
Percent yield = 57.8 %
Answer:
it will gain electrons to fill its outer shell
Explanation:
This element is boron which has 5 electrons.
<span>Oxygen-16 atomic number is 8 so it has 8 protons. Its atomic weight is 16 so 16-8 = 8 neutrons.
Hope I helped. :) </span>
Just have to do antilog
[H+]= 10^-5.6
Answer:
Detail is given below
Explanation:
Atomic radii trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
In A we can see that there is one positive charge and force of attraction is 2.30×10⁻⁸ N and distance is 0.10 nm
In B we can see that negative charge is further away from nucleus because of greater distance thus force of attraction will be less. 0.58×10⁻⁸ N
In C this distance further increases and force also goes in decreasing 0.26×10⁻⁸ N.