Answer:
3) D: 31 m/s
4) D: 84.84 metres
Explanation:
3) Initial velocity along the x-axis is;
v_x = v_o•cos θ
Initial velocity along the y-axis is;
v_y = v_o•sin θ
Plugging in the relevant values, we have;
v_x = 31 cos 60
v_x = 31 × 0.5
v_x = 15.5 m/s
Similarly,
v_y = 31 sin 60
v_y = 31 × 0.8660
v_y = 26.85 m/s
Thus, magnitude of the initial velocity is;
v = √(15.5² + 26.85²)
v ≈ 31 m/s
4) Formula for horizontal range is;
R = (v² sin 2θ)/g
R = (31² × sin (2 × 60))/9.81
R = 84.84 m
Answer:
A.88 feet per second.
B.96.56 km /hr
Explanation:
A
When converting from miles per hour to feet per second, we can use the following conversion factor.
1 mile per hour = 1.46667 feet per second.
Hence, 60 miles per hour will be = 60 X 1.46667 = 88 feet per second.
B.
Similarly, we can use the same process when converting from miles per hour to km per second.
1 mile = 1.60934 km
hence to convert we will multiply 60 miles/hour by 1.60934 km = 96.56 km /hr
E is correct because net force in the forward direction is greater
Answer:
The extension of the wire is 0.362 mm.
Explanation:
Given;
mass of the object, m = 4.0 kg
length of the aluminum wire, L = 2.0 m
diameter of the wire, d = 2.0 mm
radius of the wire, r = d/2 = 1.0 mm = 0.001 m
The area of the wire is given by;
A = πr²
A = π(0.001)² = 3.142 x 10⁻⁶ m²
The downward force of the object on the wire is given by;
F = mg
F = 4 x 9.8 = 39.2 N
The Young's modulus of aluminum is given by;

Where;
Young's modulus of elasticity of aluminum = 69 x 10⁹ N/m²

Therefore, the extension of the wire is 0.362 mm.
Answer:
A record player has a velocity of 33.33 RPM. How fast is the record spinning in m/s at a distance of 0.085 m from the center? [0.297 m/s] 6. A merry-go-round a.k.a “the spinny thing” is rotating at 15 RPM, and has a radius of 1.75 m A.