Answer:
given
y=6.0sin(0.020px + 4.0pt)
the general wave equation moving in the positive directionis
y(x,t) = ymsin(kx -?t)
a) the amplitude is
ym = 6.0cm
b)
we have the angular wave number as
k = 2p /?
or
? = 2p / 0.020p
=1.0*102cm
c)
the frequency is
f = ?/2p
= 4p/2p
= 2.0 Hz
d)
the wave speed is
v = f?
= (100cm)(2.0Hz)
= 2.0*102cm/s
e)
since the trignometric function is (kx -?t) , sothe wave propagates in th -x direction
f)
the maximum transverse speed is
umax =2pfym
= 2p(2.0Hz)(6.0cm)
= 75cm/s
g)
we have
y(3.5cm ,0.26s) = 6.0cmsin[0.020p(3.5) +4.0p(0.26)]
= -2.0cm
Use pythagorean theorem

to find the opposite side, which is 7.3
so then you can just use inverse sinA=7.3/10 which equals 46.9 degrees
Answer:
A body travels 10 meters during the first 5 seconds of its travel,and a total of 30 meters over the first 10 seconds of its travel
20miles / 5sec = 4miles /sec would be the average speed for the last 20 m
Explanation:
The answer is 4 m/s.
In the first 5 seconds, a body travelled 10 meters. In the first 10 seconds of the travel, the body travelled a total of 30 meters, which means that in the last 5 seconds, it travelled 20 meters (30m + 10m).
The relation of speed (v), distance (d), and time (t) can be expressed as:
v = d/t
We need to calculate the speed of the second 5 seconds of the travel:
d = 20 m (total 30 meters - first 10 meters)
t = 5 s (time from t = 5 seconds to t = 10 seconds)
Thus:
v = 20m / 5s = 4 m/s
PLEASE GIVE BRAINIEST!! HOPE THIS HELPS