Answer:
The position of my house is a little uphill as compared to the position of my school. The distance I have to travel from my house to school is nearly 2 kilometers. The displacement is in the 2000 m towards the left from my house. The speed of the bus which I usually take is 40 km/ hour.
Answer:
3100 m/s
Explanation:
The relationship between frequency and wavelength of a wave is given by the wave equation:

where
v is the speed of the wave
f is its frequency
is the wavelength
For the wave in this problem,
f = 15,500 Hz

Therefore, the wave speed is

The answers to all the research related questions are written below.
<h3>What is atom?</h3>
Atom is the smallest unit of the element. Different elements have different size atoms and same element have same size atoms.
James Chadwick tracked down the neutron in 1932 and was conceded the Nobel Prize for science in 1935 held in a German prison camp for all of World War 1, he driven the British gathering inside the Manhattan Extend, in which the UK and Canada maintained the USA's World War 2 effort to build the world with nuclear bomb.
Chadwick and Rutherford were the first scientists who measured the nucleus radius using the alpha particles. He did Gold foil experiment to find the size of nucleus.
The contributions are present in the modern atomic model. They are: All matter consists of atoms. Atoms of the same element are the same in size and atoms of different elements are different. Atoms combine in whole-number ratios to form compounds.
Learn more about atoms.
brainly.com/question/1566330
#SPJ1
The bicyclist accelerates with magnitude <em>a</em> such that
25.0 m = 1/2 <em>a</em> (4.90 s)²
Solve for <em>a</em> :
<em>a</em> = (25.0 m) / (1/2 (4.90 s)²) ≈ 2.08 m/s²
Then her final speed is <em>v</em> such that
<em>v</em> ² - 0² = 2<em>a</em> (25.0 m)
Solve for <em>v</em> :
<em>v</em> = √(2 (2.08 m/s²) / (25.0 m)) ≈ 10.2 m/s
Convert to mph. If you know that 1 m ≈ 3.28 ft, then
(10.2 m/s) • (3.28 ft/m) • (1/5280 mi/ft) • (3600 s/h) ≈ 22.8 mi/h
Well, the surface of still water has surface tension. If there isn't enough mass or weight to break the surface tension, the object will float.