Nuclear fission formula by the looks of it. Possibly how Professor Lisa Meitner realised that she had split the atomic nucleus. The Xenon and the Strontium (Xe and Sr) would presumably show up in a radio chemical assaying test at her university.
A few years later, Professor J Robert Oppenheimer watched a nuclear test somewhere near Los Alamos, US and lamented "I am become death, the destroyer of worlds". Shortly thereafter, Hiroshima and Nagasaki were razed to the ground and annihilated by nuclear bombs. Professor Meitner, probably inadvertently, had got the keys to the doors to "nuclear hell", and JRO ended up turning them. Something like that maybe, and a very harrowing and tumultuous period in human history.
Note in the fission equation, that out come two neutrons. They go off and produce a similar fission in another U235 nucleus into a chain reaction which, i not moderated by, say, Boron, can end up as a "mushroom cloud".
Answer:
anaemia, low blood pressure etc.
Convex lenses when placed in the air, will cause rays of light (parallel to the central axis) to converge.
Converging lenses, commonly referred to as convex lenses, have thicker centers and narrower upper and lower margins. The edges are outwardly curled. This lens has the ability to concentrate a beam of parallel light rays coming from the outside onto a spot on the opposite side of the lens.
The image created is referred to be a genuine image when it is inverted relative to the object. On a screen, this kind of image can be recorded. When the object is positioned at a point farther than one focal length from the lens, a converging lens creates a true image.
A virtual image is one that cannot be produced on a screen and is formed when the image is upright in relation to the object. When an item is positioned within one focal length of a converging lens, a virtual image is created. It creates an enlarged image of the object on the same side of the lens as the image. It serves as a magnifier.
Learn more about the convex lens here:
brainly.com/question/12847657
#SPJ4
5.52 × 10 to the 5th power (100000) . In scientific notation you need to have a decimal numver times 10 to the power of something so you can divide 552000 by 10 5 times. So in order to get 552000 you need to have 10 to the 4th power and 5.52
Answer:
68cm
Explanation:
You can solve this problem by using the momentum conservation and energy conservation. By using the conservation of the momentum you get

m: mass of the bullet
M: mass of the pendulum
v1: velocity of the bullet = 410m/s
v2: velocity of the pendulum =0m/s
v: velocity of both bullet ad pendulum joint
By replacing you can find v:

this value of v is used as the velocity of the total kinetic energy of the block of pendulum and bullet. This energy equals the potential energy for the maximum height reached by the block:

g: 9.8/s^2
h: height
By doing h the subject of the equation and replacing you obtain:

hence, the heigth is 68cm