Answer:
See explaination
Explanation:
Let's define tuple as an immutable list of Python objects which means it can not be changed in any way once it has been created.
Take a look at the attached file for a further detailed and step by step solution of the given problem.
Answer:
a. ε₁=-0.000317
ε₂=0.000017
θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain =3.335 *10^-4
Associated average normal strain ε(avg) =150 *10^-6
θ = 31.71 or -58.29
Explanation:
![\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2} \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2} \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6} \pm 1.67 \times 10^{-4}](https://tex.z-dn.net/?f=%5Cepsilon%20_%7B1%2C2%7D%20%3D%5Cfrac%7B%5Cepsilon_x%20%2B%20%5Cepsilon_y%7D%7B2%7D%20%20%5Cpm%20%5Csqrt%7B%28%5Cfrac%7B%5Cepsilon_x%20%2B%20%5Cepsilon_y%7D%7B2%7D%20%29%5E2%20%2B%20%28%5Cfrac%7B%5Cgamma_xy%7D%7B2%7D%29%5E2%7D%20%5C%5C%5C%5C%5Cepsilon%20_%7B1%2C2%7D%20%3D%5Cfrac%7B-300%20%5Ctimes%2010%5E%7B-6%7D%20%2B%200%7D%7B2%7D%20%20%5Cpm%20%5Csqrt%7B%28%5Cfrac%7B-300%20%5Ctimes%2010%5E%7B-6%7D%2B%200%7D%7B2%7D%29%20%5E2%20%2B%20%28%5Cfrac%7B150%20%5Ctimes%2010%5E-6%7D%7B2%7D%29%5E2%7D%5C%5C%5C%5C%5Cepsilon%20_%7B1%2C2%7D%20%3D%20-150%20%5Ctimes%2010%5E%7B-6%7D%20%20%5Cpm%201.67%20%5Ctimes%2010%5E%7B-4%7D)
ε₁=-0.000317
ε₂=0.000017
To determine the orientation of ε₁ and ε₂
![tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5](https://tex.z-dn.net/?f=tan%202%20%5Ctheta_p%20%3D%20%5Cfrac%7B%5Cgamma_xy%7D%7B%5Cepsilon_x%20-%20%5Cepsilon_y%7D%20%5C%5C%5C%5Ctan%202%20%5Ctheta_p%20%3D%20%5Cfrac%7B150%20%5Ctimes%2010%5E%7B-6%7D%7D%7B-300%20%5Ctimes%2010%5E%7B-6%7D-%5C%200%7D%5C%5C%5C%5Ctan%202%20%5Ctheta_p%20%3D%20-0.5)
θ= -13.28° and 76.72°
To determine the direction of ε₁ and ε₂
![\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2} + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2} + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56) + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\](https://tex.z-dn.net/?f=%5Cepsilon%20_%7Bx%27%20%7D%3D%5Cfrac%7B%5Cepsilon_x%20%2B%20%5Cepsilon_y%7D%7B2%7D%20%20%2B%20%5Cfrac%7B%5Cepsilon_x%20-%5Cepsilon_y%7D%7B2%7D%20cos2%5Ctheta%20%20%2B%20%5Cfrac%7B%5Cgamma_xy%7D%7B2%7Dsin2%5Ctheta%20%5C%5C%5C%5C%5Cepsilon%20_%7Bx%27%7D%20%3D%5Cfrac%7B-300%20%5Ctimes%2010%5E%7B-6%7D%2B%20%5C%200%7D%7B2%7D%20%20%2B%20%5Cfrac%7B-300%20%5Ctimes%2010%5E%7B-6%7D%20-%5C%200%7D%7B2%7D%20cos%28-26.56%29%20%20%2B%20%5Cfrac%7B150%20%5Ctimes%2010%5E%7B-6%7D%7D%7B2%7Dsin%28-26.56%29%5C%5C%5C%5C)
=-0.000284 -0.0000335 = -0.000317 =ε₁
Therefore θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain
![\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}](https://tex.z-dn.net/?f=%5Cgamma_%7Bmax%20%5C%20in%20%5C%20plane%7D%20%3D2%5Csqrt%7B%28%5Cfrac%7B%5Cepsilon_x%20%2B%20%5Cepsilon_y%7D%7B2%7D%20%29%5E2%20%2B%20%28%5Cfrac%7B%5Cgamma_xy%7D%7B2%7D%29%5E2%7D%20%5C%5C%5C%5C%5Cgamma_%7Bmax%20%5C%20in%20%5C%20plane%7D%20%3D%202%5Csqrt%7B%28%5Cfrac%7B-300%20%2A10%5E%7B-6%7D%20%2B%200%7D%7B2%7D%20%29%5E2%20%2B%20%28%5Cfrac%7B150%20%2A10%5E%7B-6%7D%7D%7B2%7D%29%5E2%7D)
=3.335 *10^-4
![\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )](https://tex.z-dn.net/?f=%5Cepsilon_%7Bavg%7D%20%3D%28%5Cfrac%7B%5Cepsilon_x%20%2B%20%5Cepsilon_y%7D%7B2%7D%20%29)
ε(avg) =150 *10^-6
orientation of γmax
![tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}](https://tex.z-dn.net/?f=tan%202%20%5Ctheta_s%20%3D%20%5Cfrac%7B-%28%5Cepsilon_x%20-%20%5Cepsilon_y%29%7D%7B%5Cgamma_xy%7D%20%5C%5C%5C%5Ctan%202%20%5Ctheta_s%20%3D%20%5Cfrac%7B-%28-300%2A10%5E%7B-6%7D%20-%200%29%7D%7B150%2A10%5E%7B-6%7D%7D)
θ = 31.71 or -58.29
To determine the direction of γmax
![\gamma _{x'y' }= - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }= - \frac{-300*10^{-6} - \ 0}{2} sin(63.42) + \frac{150*10^{-6}}{2}cos(63.42)](https://tex.z-dn.net/?f=%5Cgamma%20_%7Bx%27y%27%20%7D%3D%20%20-%20%5Cfrac%7B%5Cepsilon_x%20-%5Cepsilon_y%7D%7B2%7D%20sin2%5Ctheta%20%20%2B%20%5Cfrac%7B%5Cgamma_xy%7D%7B2%7Dcos2%5Ctheta%20%5C%5C%5C%5C%5Cgamma%20_%7Bx%27y%27%20%7D%3D%20%20-%20%5Cfrac%7B-300%2A10%5E%7B-6%7D%20-%20%5C%200%7D%7B2%7D%20sin%2863.42%29%20%20%2B%20%5Cfrac%7B150%2A10%5E%7B-6%7D%7D%7B2%7Dcos%2863.42%29)
= 1.67 *10^-4
Answer:
What's the purpose of tracks going in the red? Having tracks go into the red is surely redundant, I don't see any purpose in having tracks distort ... It just seems like a hang on from the old days of tape, it's something that people who ... be in daws and I'm trying to assemble an alternative I understand the current mixing system. The Dow Jones Industrial Average (DJIA) is a stock index of 30 blue-chip industrial ... Today, the DJIA is a benchmark that tracks American stocks that are ... To calculate the DJIA, the current prices of the 30 stocks that make up the ... the longevity of the Dow serves this purpose better than all other indices.
Explanation:
There must be a photo for me to answer!
According to the question of the pulsating brake pedal, both A and B are correct.
What causes brake pulsation?
Brake pulsation is mainly caused by warped rotors/brake discs. Excessive hard braking or quick stops, which can significantly overheat the discs, are the primary causes of deformed rotors. When the discs overheat, the composition of the metal disc material changes, resulting in imperfections in the metal's surface. Hotspots are noticeable irregularities. They appear as discoloured areas of the disc material, which are often bluish or blackish in appearance. The brake pedal is the pedal which you press with your foot to slow or stop a vehicle. When the driver presses the brake pedal, the system automatically delivers the appropriate pressure required to prevent colliding with the vehicle in front.
To learn more about brake pulsation
brainly.com/question/28779956
#SPj4