<span>the balanced equation for the reaction is as follows
Na</span>₂<span>SO</span>₄<span> + BaCl</span>₂<span> ----> 2NaCl + BaSO</span>₄
<span>stoichiometry of Na</span>₂<span>SO</span>₄<span> to BaCl</span>₂<span> is 1:1
first we need to find out which the limiting reactant is
limiting reactant is fully used up in the reaction.
number of Na2So4 moles - 0.5 mol number of BaCl2 moles - 60 g / 208 g/mol = 0.288 mol
since molar ratio is 1:1 equal number of moles of both reactants should react with each other
therefore BaCl2 is the limiting reactant and Na2SO4 is in excess. amount of product formed depends on number of limiting reactant present.
stoichiometry of BaCl</span>₂<span> to BaSO</span>₄<span> is 1:1.
therefore number of BaSO4 moles formed - 0.288 mol</span>
A. The mass of an object increases
Answer:
1. The change in energy is 60KJ or 6.0 × 10^1 KJ
2. Endothermic reaction
Explanation:
The Enthalpy (ΔU) for the mixture is given as 215kJ and the workdone (W) on the mixture is - 155KJ. Hence, the change in the energy (ΔH) ofthe mixture is computed using the equation below:
ΔH = ΔU + w
Where,
ΔH= Change in energy
ΔU= Enthalpy change
W= workdone
Therefore ΔH is:
ΔH= 215 kJ + (-155Kj)
ΔH= 60 KJ
Therefore, the change in energy is 60KJ or 6.0 × 10^1 KJ
The value is positive so it is an endothermic reaction.
An endothermic reaction happens when the energy used to break the bonds in the reactants is higher than the energy given out when bonds are formed in the products. This means that the entire reaction takes in energy, hence there is a temperature decrease in the surroundings. Endothermic reactions cannot happen spontaneously. Work is usually done in order to get these reactions to occur. When endothermic reactions absorb energy, a temperature drop is measured by the reaction.
Answer:
solar eclipses occur during a new moon, lunar eclipses occur during a full moon
Answer:
The balanced equation would be
2Na(s) + 2H2O(l) ===> 2NaOH(aq) + H2(g)
where
s---solid
l--- liquid
aq--- aqueous
g---- gas
Are the states of each substance