1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
3 years ago
13

At each corner of a square of side there are point charges of magnitude Q, 2Q, 3Q, and 4Q

Physics
1 answer:
Bad White [126]3 years ago
6 0

Answer:

\displaystyle |F_t|=10.9\ \frac{KQ^2}{l^2}

\displaystyle \theta =68^o

Explanation:

Electrostatic Force

It's the force that appears between two electrical charges q1 q2 when they are placed at a certain distance d. The force can be computed by using the Coulomb's law:

\displaystyle F=\frac{KQ_1Q_2}{d^2}

We have an arrangement of 4 charges as shown in the image below. We need to calculate the total force exerted on the charge 2Q by the other 3 charges. The free body diagram is also shown in the second image provided. The total force on 2Q is the vectorial sum of F1, F2, and F3. All the forces are repulsive, since all the charges have the same sign. Let's compute each force as follows:

\displaystyle |F_1|=\frac{KQ(2Q)}{l^2}=\frac{2KQ^2}{l^2}

\displaystyle |F_2|=\frac{K(2Q)(4Q)}{l^2}=\frac{8KQ^2}{l^2}

The distance between 3Q and 2Q is the diagonal of the rectagle of length l:

\displaystyle |d_3|=\sqrt{l^2+l^2}=\sqrt{2}\ l

The force F3 is

\displaystyle |F_3|=\frac{K(3Q)(2Q)}{(\sqrt{2l)}^2}=\frac{3KQ^2}{l^2}

Each force must be expressed as vectors. F1 is pointed to the right direction, thus its vertical components is zero

\displaystyle \vec{F_1}=\left \langle |F_1|,0 \right \rangle=\left \langle \frac{2KQ^2}{l^2},0 \right \rangle

F2 is pointed upwards and its horizontal component is zero

\displaystyle \vec{F_2}=\left \langle 0,\frac{8KQ^2}{l^2} \right \rangle

F3 has two components because it forms an angle of 45° respect to the horizontal, thus

\displaystyle \vec{F_3}=\left \langle \frac{3KQ^2}{l^2}\ cos45^o,\frac{3KQ2}{l^2} sin45^o\right \rangle

\displaystyle \vec{F_3}=\left \langle \frac{3\sqrt{2}KQ^2}{2l^2},\frac{3\sqrt{2}KQ^2}{2l^2}\right \rangle

Now we compute the total force

\displaystyle \vec{F_t}=\vec{F_1}+\vec{F_2}+\vec{F_3}

\displaystyle \vec{F_t}=\left \langle \frac{2KQ^2}{l^2},0 \right \rangle +\left \langle 0,\frac{8KQ^2}{l^2} \right \rangle + \left \langle \frac{3\sqrt{2}KQ^2}{2l^2},\frac{3\sqrt{2}KQ^2}{2l^2}\right \rangle

\displaystyle \vec{F_t}=\left \langle \left(2+\frac{3\sqrt{2}}{2}\right)\frac{KQ^2}{l^2},\left(8+\frac{3\sqrt{2}}{2}\right) \frac{KQ^2}{l^2}\right \rangle

\displaystyle F_t=\left \langle 4.121,10.121 \right \rangle \frac{KQ^2}{l^2}

Now we compute the magnitude

\boxed{\displaystyle |F_t|=10.9\ \frac{KQ^2}{l^2}}

The direction of the total force is given by

\displaystyle tan\theta =\frac{10.121}{4.121}=2.4558

\boxed{\displaystyle \theta =68^o}

You might be interested in
Photons are also known as beta particles. (true or false)
Llana [10]
No. Beta particles are electrons.
5 0
3 years ago
Explain ways that weak and strong nuclear forces are alike.
larisa [96]
They both use messenger particles to carry the force. Gluons for the strong force and W and Z for the weak. And both sets of particles solely with the sub atomic particles of the nuclei: quarks and neutrinos. That is, their range is limited to the nuclei of the atoms and the ions.
8 0
3 years ago
Formula:
s2008m [1.1K]

Answer:

55N

Explanation:

Using Newton's second law of motion:

F=ma

Force=mass × acceleration

F=25×2.2

F=55N

So 55 Newtons are needed

8 0
3 years ago
Find the ratio of the final speed of the electron to the final speed of the hydrogen ion, assuming non-relativistic speeds. Take
KiRa [710]

Answer:

\frac{V_{e}}{V_{h}}=0.428*10^{2}

Explanation:

From conservation of energy states that

K_{i}+v_{i}=v_{f}+K_{f}\\ as\\K_{i}=0\\K_{f}=1/2mv^{2}\\ v_{i}=qv\\v_{f}=0\\So\\qv=1/2mv^{2}\\ v=\sqrt{\frac{2qv}{m} }\\ Velocity_{electron}=\sqrt{\frac{2qv}{m_{e}} }\\Velocity_{hydrogen}=\sqrt{\frac{2qv}{m_{h}} }\\\frac{V_{e}}{V_{h}}=\sqrt{\frac{\frac{2qv}{m_{e}}}{\frac{2qv}{m_{h}}}}\\\frac{V_{e}}{V_{h}}=\sqrt{\frac{m_{h}}{m_{e}} }\\\frac{V_{e}}{V_{h}}=\sqrt{\frac{1.67*10^{-27} }{9.11*10^{-31} } }\\\frac{V_{e}}{V_{h}}=0.428*10^{2}

5 0
3 years ago
What is happening at the atomic level to give rise to the observed energy?
ziro4ka [17]
Here is the answer. What is happening at the atomic level to give rise to the observed energy is that t<span>he </span>atomic level<span> is affected by the movement of electrons so as to </span><span>give rise to the observed energy. Hope this answers your question. Have a great day!</span>
6 0
4 years ago
Other questions:
  • What is the momentum of an object that is traveling at 3 m/s and has a mass of 5 kg?
    5·1 answer
  • Rt c if you were to hit a ping pong ball of mass 0.0029 g with the same force that caused a 0.058-g tennis ball to move with an
    8·2 answers
  • A supersonic aircraft consumes 5320 imperial gallons of kerosene per hour of flight and flies an average of 14 hours per day. it
    13·1 answer
  • 28. Samuel applies a horizontal force of 35.0 N to a sleigh over a distance of 1.50 m
    11·1 answer
  • A car is driven 110 km west and then 40 km southwest, how far is the car from the point of origin?
    11·1 answer
  • A ball is thrown horizontally from a high cliff with a velocity of 5 m/s. Ignoring the slowing of the ball due to air resistance
    13·2 answers
  • Find the frequency of a spring block system if it is doing 4 oscillation in 100s
    7·1 answer
  • Calculate the speed for a car that went a distance of 125 miles in
    7·1 answer
  • What is the Potential Energy of a roller coaster if it has a velocity of 35 m/s and a mass of 2000 kg and is at a height of 200
    8·1 answer
  • Which feature is used to classify galaxies<br> age<br> color<br> shape<br> size
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!