Answer:
Therefore, the moment of inertia is:
Explanation:
The period of an oscillation equation of a solid pendulum is given by:
(1)
Where:
- I is the moment of inertia
- M is the mass of the pendulum
- d is the distance from the center of mass to the pivot
- g is the gravity
Let's solve the equation (1) for I
Before find I, we need to remember that
Now, the moment of inertia will be:
Therefore, the moment of inertia is:
I hope it helps you!
Answer:A block rests on a horizontal, frictionless surface. A string is attached to the block, and is pulled with a force of 45.0 N at an…
Explanation:
It typically take longer for a heavier object to slow down therefor, a train will take more time. <span />
Answer:
a)P₂ =4 bar
b)W= - 1482.48 KJ
It means that work done on the system.
c)S₂ - S₁ = 3.42 KJ/K
Explanation:
Given that
T₁ = 300 K ,V₁ = 3 m³ ,P₁=2 bar
T₂ = 600 K ,V₂=V₁ 3 m³
Given that tank is rigid and insulated.It means that volume of the gas will remain constant.
Lets take the final pressure = P₂
For ideal gas P V = m R T
P₂ =4 bar
Internal energy
ΔU = m Cv ΔT
Cv=0.71 KJ/kg.k for air
m= 6.96 kg
ΔU= 6.96 x 0.71 x (600 - 300)
ΔU=1482.48 KJ
From first law
Q= ΔU + W
Q= 0 Insulated
W = - ΔU
W= - 1482.48 KJ
It means that work done on the system.
Change in the entropy
S₂ - S₁ = 3.42 KJ/K
Answer: Enceladus
Explanation:
Enceladus is a small, icy body with an undergound ocean beneath its crust. Cassini discovered that geyser-like jets spew water vapor and ice particles. It is also the sixth largest moon in Saturn and just about a tenth of the largest moon in Saturn; Titan. It is often regarded as one of the most reflective body in the solar system as a result of its icy surface.