V=(40km/hr)(hr/3600s)(1000000mm/km)
v=11111.1mm/s
v=d/t
d=vt
d=(11111.1mm/s)(5s)
d=55555mm
d=5.56x10^4mm
Answer:
the height reached is = 0.458 [m]
Explanation:
We need to make a sketch of the ball and see the location of the reference point where the potential energy is zero. But the kinetic energy will be defined by the following expression:
![Ek=\frac{1}{2} *m*v^{2} \\where:Ek= kinetic energy [J]\\m = mass of the ball [kg]\\v = velocity of the ball [m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3AEk%3D%20kinetic%20energy%20%5BJ%5D%5C%5Cm%20%3D%20mass%20of%20the%20ball%20%5Bkg%5D%5C%5Cv%20%3D%20velocity%20of%20the%20ball%20%5Bm%2Fs%5D)
Replacing the values on the equation we have:
![Ek=\frac{1}{2}*(2)*(3^{2} )\\ Ek=9[J]\\](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%2A%282%29%2A%283%5E%7B2%7D%20%29%5C%5C%20Ek%3D9%5BJ%5D%5C%5C)
This kinetic energy will be transformed in potential energy in the moment when the ball starts to rolling up. Therefore the maximum height reached by the ball depends of the initial velocity given to the ball.
![Ek=Ep\\where\\Ep=potential energy [J]\\Ep=m*g*h\\where\\g=gravity = 9.81[m/s^2]\\h=height reached [m]\\](https://tex.z-dn.net/?f=Ek%3DEp%5C%5Cwhere%5C%5CEp%3Dpotential%20energy%20%5BJ%5D%5C%5CEp%3Dm%2Ag%2Ah%5C%5Cwhere%5C%5Cg%3Dgravity%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Ch%3Dheight%20reached%20%5Bm%5D%5C%5C)
Now we have:
![h=\frac{Ep}{m*g} \\h=\frac{9}{2*9.81} \\\\h=0.45 [m]](https://tex.z-dn.net/?f=h%3D%5Cfrac%7BEp%7D%7Bm%2Ag%7D%20%5C%5Ch%3D%5Cfrac%7B9%7D%7B2%2A9.81%7D%20%5C%5C%5C%5Ch%3D0.45%20%5Bm%5D)
In that moment when the ball reach the 0.45 [m] the potencial energy will be maximum and equal to the kinetic energy when the ball has a velocity of 3[m/s]
We could use the change of pressure to calculate for the height climbed by the mountain hiker. The change of pressure is given by
p = rho * g * h, where p is the change of pressure, rho is the air density, g is the acceleration due to gravity, and h is the height.
Using the conversion 1 mbar = 100 Pa,
(930 - 780)(100) = (1.20)(9.80)h
15000 = 1.20*9.80*h
h = 1.28 km
In simple words, flux can be stated as the rate of flow of a fluid, radiant energy, or particles across a given area.
<u>Explanation:</u>
<u>Mutual Flux:</u>
- The magnetic lines present in among two magnets or solenoid is mutual flux.
- These are the lines in which the attraction and repulsion happens.
- The SI unit of mutual flux is the Henry
<u>Leakage Flux:</u>
- In simple words, it can be stated as the magnetic flux which does not follow the specially designed way in a magnetic circuit.
- Leakage flux in the induction motor takes spot due to current runs through the essence of the induction motor.
- The SI unit of Leakage flux is the Weber
<u>Magnetizing flux</u>
- Magnetic flux is an analysis of the entire magnetic field which moves in a given field
- In simple words can be defined as the Magnetic flux is what generates the field around a magnetic material.
- The SI unit of magnetic flux is the Weber