submarinismo is scuba diving but Bueco is dive
To solve this problem we will begin by finding the necessary and effective distances that act as components of the centripetal and gravity Forces. Later using the same relationships we will find the speed of the body. The second part of the problem will use the equations previously found to find the tension.
PART A) We will begin by finding the two net distances.

And the distance 'd' is



Through the free-body diagram the tension components are given by


Here we can watch that,

Dividing both expression we have that,

Replacing the values,


PART B) Using the vertical component we can find the tension,




In a moving car the outside looks to be moving. however if viewed from the outside, the car appears to be moving. so motion is relative to the person observing.
Answer:

Explanation:
The inlet specific volume of air is given by:

The mass flow rates is expressed as:

The energy balance for the system can the be expresses in the rate form as:
![E_{in}-E_{out}=\bigtriangleup \dot E=0\\\\E_{in}=E_{out}\\\\\dot m(h_1+0.5V_1^2)=\dot W_{out}+\dot m(h_2+0.5V_2^2)+Q_{out}\\\\\dot W_{out}=\dot m(h_2-h_1+0.5(V_2^2-V_1^2))=-m({cp(T_2-t_1)+0.5(V_2^2-V_1^2)})\\\\\\\dot W_{out}=-(10.42lbm/s)[(0.25\frac{Btu}{lbm.\textdegree F})(300-900)\textdegree F+0.5((700ft/s)^2-(350ft/s)^2)(\frac{1\frac{Btu}{lbm}}{25037ft^2/s^2})]\\\\\\\\=1486.5\frac{Btu}{s}](https://tex.z-dn.net/?f=E_%7Bin%7D-E_%7Bout%7D%3D%5Cbigtriangleup%20%5Cdot%20E%3D0%5C%5C%5C%5CE_%7Bin%7D%3DE_%7Bout%7D%5C%5C%5C%5C%5Cdot%20m%28h_1%2B0.5V_1%5E2%29%3D%5Cdot%20W_%7Bout%7D%2B%5Cdot%20m%28h_2%2B0.5V_2%5E2%29%2BQ_%7Bout%7D%5C%5C%5C%5C%5Cdot%20W_%7Bout%7D%3D%5Cdot%20m%28h_2-h_1%2B0.5%28V_2%5E2-V_1%5E2%29%29%3D-m%28%7Bcp%28T_2-t_1%29%2B0.5%28V_2%5E2-V_1%5E2%29%7D%29%5C%5C%5C%5C%5C%5C%5Cdot%20W_%7Bout%7D%3D-%2810.42lbm%2Fs%29%5B%280.25%5Cfrac%7BBtu%7D%7Blbm.%5Ctextdegree%20F%7D%29%28300-900%29%5Ctextdegree%20F%2B0.5%28%28700ft%2Fs%29%5E2-%28350ft%2Fs%29%5E2%29%28%5Cfrac%7B1%5Cfrac%7BBtu%7D%7Blbm%7D%7D%7B25037ft%5E2%2Fs%5E2%7D%29%5D%5C%5C%5C%5C%5C%5C%5C%5C%3D1486.5%5Cfrac%7BBtu%7D%7Bs%7D)
Hence, the mass flow rate of the air is 1486.5Btu/s
Answer:
B. equals zero
Explanation:
Given data
one complete cycle = heat flow
solution
we have given that when heat engine complete 1 cycle change in energy = net heat flow
that is always equal to zero
from first law of thermodynamics that
ΔU = Q + W
we know ΔU is the change internal energy in system and Q is net heat transfer in system and W is net work done in system
therefore change of internal energy during one cycle
ΔU = Ufinal - Uinitial
ΔU = Uinitial - Uinitial = 0