the atomic number of a chemical element (also known as its proton number) is the number of protons found in the nucleus of an atom of that element, and therefore identical to the charge number of the nucleus.
Hope this helped
The sketch of the system is: two strings, 1 and 2, are attached to the ceiling and to a third string, 3.The third string holds the bag of cement.
The free body diagram of the weight with the string 3, drives to the tension T3 = weihgt => T3 = 325 N
The other free body diagram is around the joint of the three strings.
In this case, you can do the horizontal forces equilibrium equation as:
T1* cos(60) - T2*cos(40) = 0
And the vertical forces equilibrium equation:
Ti sin(60) + T2 sin(40) = T3 = 325 N
Then you have two equations with two unknown variables, T1 and T2
0.5 T1 - 0.766 T2 = 0
0.866 T1 + 0.643T2 = 325
When you solve it you get, T1 = 252.8 N and T2 = 165 N
Answer: T1 = 252.8 N, T2 = 165N, and T3 = 325N
The unit for power is Watts. the newton is a unit for force. joules for energy and meters for distance
calculate the power per hour of a radiator, knowing that it is connected to a common 110 v contact. and requires 20 Amp.
Answer:
2.2kWh
Explanation:
Given parameters:
Potential difference = 110v
Current = 20A
Unknown:
Power = ?
Solution:
To solve this problem, we use the expression below:
Power = IV
Power = 110 x 20 = 2200W
This is therefore 2.2kW
Power per hour = 2.2kWh
Answer:
2.63 %.
Explanation:
Given that,
The calculated value of the specific heat of water is 4.29 J/g.C
Original value of specific heat of water is 4.18 J/g.C.
We need to find the student's percent error. The percentage error in any quantity is given by :

So, the student's percent error is 2.63 %.