Answer:
1.811 g
Explanation:
The computation of the mass need to use to make the solution is shown below:
We know that molarity is

So,


= 0.031 moles
Now

where,
The Molecular weight of NaCl is 58.44 g/mole
And, the moles are 0.031 moles
So, the mass of NaCL is

= 1.811 g
We simply applied the above formulas
Answer:
B.) He added a base to raise the PH
Explanation:
Took test
Answer:
The correct answer is option D.
Explanation:
When a chemical reaction proceeds the reactants are converted into products. The energy hill represents the potential energy of the reaction.
There are two conditions: If the reaction is endothermic than the energy of the products is greater than the energy of the reactants and ΔH is positive. This energy gain is shown in the form of a peak. In an exothermic reaction, the energy of the products is lower than the reactants and ΔH is negative.
So the suitable option is D which states that the reaction is endothermic and the potential energy gained by the products is higher when a reaction proceeds.
Answer:
As long as it is a blank solution of the reagent, the Absorbance will be 0 regardless of the path length.
Explanation:
Absorbance of light by a reagent of concentration c, is given as
A = εcl
A = Absorbance
ε = molar absorptivity
c = concentration of reagent.
l = length of light path or length of the solution the light passes through.
So, if all.other factors are held constant, If a sample for spectrophotometric analysis is placed in a 10-cm cell, the absorbance will be 10 times greater than the absorbance in a 1-cm cell.
But the reagent blank solution is called a blank solution because it lacks the given reagent. A blank solution does not contain detectable amounts of the reagent under consideration. That is, the concentration of reagent in the blank solution is 0.
Hence, the Absorbance is subsequently 0. And increasing or decreasing the path length of light will not change anything. As long as it is a blank solution of the reagent, the Absorbance will be 0 regardless of the path length.
Hope this Helps!!!
Yes this is true as in cold conditions our body doesn't feel the urge of water therefore we may become dehydrated not even knowing about it and of course in hot coditions we sweat therefore we loose water.
Hope this helps :).