Answer:
a.3.84m
b.-106.67m/s
c.947.3m/s^2
d.70.17 rad
e.2.5Hz
d.0.4secs
Explanation:
Given x=(7.8)cos[5πrad/s)t+π/3)]
a.Displacement at t=4.4
7.8cos(5π*4.4+π\3)=3.84m
b.velocity
V= dx/dr=-5π(7.8)sin(5πrad/s)t+π\3
at t=4.4
-5π(7.8)sin(5π*4.4+π\3)=-106.67m/s
c.acceleration
a=d^2x/dr^2
-(5π)^2(7.8) cos (5π*t+π\3)
at t=4.4
-(5π)^2(7.8)cos(5π*4.4+π\3)=-947.3m/s^2
d. Phase =(5πrad/s)t+π\3
At t=4.4
5π×4.4+π\3=70.17 rad
e.frequency
Given x= 7.8cos(5πt+π\3
Compare with x=Acos(2πft)
2πft=5πt
F=2.5Hz
f.T=1\f
T=1/2.5=0.4sec
Because earths gravitational force is greater than that of the moon.
Frequency =1/period
Freq= 1/6= 0.17 Hertz
Median: The middle number; found by ordering all data points and picking out the one in the middle (or if there are two middle numbers, taking the mean of those two numbers). Example: The median of 4, 1, and 7 is 4 because when the numbers are put in order (1 , 4, 7) , the number 4 is in the middle.
Answer:
Acceleration = 6m/s²
Explanation:
<u>Given the following data;</u>
Initial velocity = 35m/s
Final velocity = 65m/s
Time = 5 seconds
To find the acceleration;
In physics, acceleration can be defined as the rate of change of the velocity of an object with respect to time.
This simply means that, acceleration is given by the subtraction of initial velocity from the final velocity all over time.
Mathematically, acceleration is given by the equation;

Where,
- a is acceleration measured in

- v and u is final and initial velocity respectively, measured in

- t is time measured in seconds.
Substituting into the equation, we have


<em>Acceleration = 6m/s²</em>