Answer:
ΔP.E = 6.48 x 10⁸ J
Explanation:
First we need to calculate the acceleration due to gravity on the surface of moon:
g = GM/R²
where,
g = acceleration due to gravity on the surface of moon = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of moon = 7.36 x 10²² kg
R = Radius of Moon = 1740 km = 1.74 x 10⁶ m
Therefore,
g = (6.67 x 10⁻¹¹ N.m²/kg²)(7.36 x 10²² kg)/(1.74 x 10⁶ m)²
g = 2.82 m/s²
now the change in gravitational potential energy of rocket is calculated by:
ΔP.E = mgΔh
where,
ΔP.E = Change in Gravitational Potential Energy = ?
m = mass of rocket = 1090 kg
Δh = altitude = 211 km = 2.11 x 10⁵ m
Therefore,
ΔP.E = (1090 kg)(2.82 m/s²)(2.11 x 10⁵ m)
<u>ΔP.E = 6.48 x 10⁸ J</u>
Answer:
a = 17.68 m/s²
Explanation:
given,
length of the string, L = 0.8 m
angle made with vertical, θ = 61°
time to complete 1 rev, t = 1.25 s
radial acceleration = ?
first we have to calculate the radius of the circle
R = L sin θ
R = 0.8 x sin 61°
R = 0.7 m
now, calculating at the angular velocity
ω = 5.026 rad/s
now, radial acceleration
a = r ω²
a = 0.7 x 5.026²
a = 17.68 m/s²
hence, the radial acceleration of the ball is equal to 17.68 rad/s²
I would believe that this is false.
Answer:
1788.402 MJ
Explanation:
Work done = Force (N) x distance (m)
First we have to convert distance into metres:
173.8 x 1000 = 173,800 m
Then plug these values into the equation above:
173,800 x 10290 = 1788402000 J
The reason it's Joules (the unit for energy) is because work done = energy transferred
Now we have to convert Joules into Mega Joules:
1 J = 1/1000000 MJ
1788402000 J = 1788402000/ 1000000 = 1788.402 MJ