Answer:
v = 1.28 m/s
Explanation:
Given that,
Maximum compression of the spring, 
Spring constant, k = 800 N/m
Mass of the block, m = 0.2 kg
To find,
The velocity of the block when it first reaches a height of 0.1 m above the ground on the ramp.
Solution,
When the block is bounced back up the ramp, the total energy of the system remains conserved. Let v is the velocity of the block such that,
Initial energy = Final energy

Substituting all the values in above equation,

v = 1.28 m/s
Therefore the velocity of block when it first reaches a height of 0.1 m above the ground on the ramp is 1.28 m/s.
Answer:
Application of Newton's first law of motion
A body in motion will continue in motion in a straight line unless acted upon by an outside force.
Explanation:
<span>An isotope is a form of a
chemical element whose atomic nucleus contains a specific number of neutrons in
addition to the number of protons that distinctively defines the element. The
nuclei of most atoms have neutrons as well as protons.</span>
Answer:
W= 210 N
Explanation:
Just use work = Fparallel*d
W= 35*6
W= 210 N
Force = Work/distance
Force = 150/10
= 15 Newtons
Force = 15 Newtons
Therefore, 15 newtons of force is applied to the body when 150 joules of work
is done in displacing the body through a distance of 10m in the direction of the force.