1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
2 years ago
13

1 If electromagnetic radiation acted like particles in the double-slit experiment, what would be observed?

Physics
1 answer:
schepotkina [342]2 years ago
7 0

Answer:

1. Two bright bands would appear on the screen in line with the slits.

2. Waves that make up the radiation collide with each other so that they add together or cancel each other out.

3. Waves that are in phase constructively interfere to create bright bands.

4. Waves that are out of phase destructively interfere to form dark bands.

5. The spacing between the bright fringes will decrease.

6. 581 nm

Explanation:

You might be interested in
give an example of situation in which an automobile driver can have a centripetal acceleration but no tangential speed
Mars2501 [29]

There is no need for tangential acceleration when moving in a circle at a constant speed.

<h3>What is centripetal acceleration?</h3>

centripetal acceleration refers to the speed at which a body moves through a circle. Due to the fact that velocity is a vector quantity (i.e., it has both a magnitude, the speed, and a direction), when a body travels in a circle, its direction is constantly changing, which causes a change in velocity, which results in an acceleration.

<h3>Which is an example of centripetal acceleration?</h3>

Centripetal acceleration occurs when you spin a ball on a string above your head. A car experiences centripetal acceleration when it is being driven in a circle. Additionally, a satellite in orbit around the Earth experiences centripetal acceleration.

To know more about tangential acceleration :

brainly.com/question/14993737

#SPJ9

6 0
1 year ago
Three observers watch a train pull away from a station toward the right of the platform. Observer A is in one of the train’s car
juin [17]

Observer A is moving inside the train

so here observer A will not be able to see the change in position of train as he is standing in the same reference frame

So here as per observer A the train will remain at rest and its not moving at all

Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body

So here observer B will see the actual motion of train which is moving in forward direction away from the platform

Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction

So the distance between them will decrease at faster rate

Now as per Newton's II law

F = ma

Now if train apply the brakes the net force on it will be opposite to its motion

So we can say

- F = ma

a = \frac{-F}{m}

so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate

It is not affected by the gravity  because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train

So there is no effect on train motion



5 0
3 years ago
What was one main point of Dalton's atomic theory
goblinko [34]
All matter is composed of atoms, indestructible building blocks.
4 0
3 years ago
Read 2 more answers
A net torque of magnitude 600 Nm is ex-
vlabodo [156]
A net torque of magnitude is 600

5 0
2 years ago
A disk of radius 25 cm spinning at a rate of 30 rpm slows to a stop over 3 seconds. What is the angular acceleration? B. How man
Ne4ueva [31]

Answer:  

A. α = - 1.047 rad/s²  

B. θ = 14.1 rad  

C. θ = 2.24 rev  

Explanation:  

A.  

We can use the first equation of motion to find the acceleration:

\omega_f = \omega_i + \alpha t  

where,  

ωf = final angular speed = 0 rad/s  

ωi = initial angular speed = (30 rpm)(2π rad/1 rev)(1 min/60 s) = 3.14 rad/s  

t = time = 3 s  

α = angular acceleration = ?  

Therefore,

0\ rad/s = 3.14\ rad/s + \alpha(3\ s)  

<u>α = - 1.047 rad/s²</u>

B.  

We can use the second equation of motion to find the angular distance:

\theta = \omega_it +\frac{1}{2}\alpha t^2\\\theta = (3.14\ rad/s)(3\ s) + \frac{1}{2}(1.04\ rad/s^2)(3)^2  

<u>θ = 14.1 rad</u>

C.  

θ = (14.1 rad)(1 rev/2π rad)  

<u>θ = 2.24 rev</u>

6 0
3 years ago
Other questions:
  • Of the four states of matter, which has particles that are the most tightly packed together?
    11·1 answer
  • Sandra is having difficulty with her reading assignment because she does not fully understand the language. Which online tool wo
    10·2 answers
  • A hot-air balloon is ascending at the rate of 10 m/s and is 74 m above the ground when a package is dropped over the side. (a) H
    8·1 answer
  • A 13,500 kg railroad freight car travels on a level track at a speed of 4.5 m/s. It collided and coupled with a 25,000 kg second
    8·1 answer
  • Define what is energy and work​
    9·1 answer
  • Although wave power does not produce pollution, some people may not want to invest in it because it is _____. 100 percent renewa
    8·2 answers
  • Help me and I'll make u Brainliest and follow u
    7·1 answer
  • Democritus discovery
    13·1 answer
  • Which two particles are present in the nucleus of an atom? Electrons and neutrons Electrons and molecules 1 TH O Protons and neu
    15·1 answer
  • In which phase is the substance when its temperature is 250 degrees Celsius?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!