1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
3 years ago
7

Air at 20°c (1 atm) enters into a 5-mm-diameter and 10-cm long circular tube at an average velocity of 5.4 m/s. the tube wall is

maintained at a constant surface temperature of 160°c. determine the convection heat transfer coefficient and the outlet mean temperature. evaluate the air properties at 50°c. the properties of air at 50°c are: ρ = 1.092 kg/m3 μ = 1.963*10-5 kg/m∙s k = 0.02735 w/m∙k cp = 1007 j/kg∙k v = 1.798 *10−5 m2/s μs = 2.420*10−5 kg/m∙s pr = 0.7228
Physics
1 answer:
velikii [3]3 years ago
8 0
Im really sorry. pls dont report this comment. i need points. I have a question but I am bad at english and I cant answer peoples
You might be interested in
Question 1 of 5
Elina [12.6K]

Answer:

solar energy warms most of the earths surface

3 0
3 years ago
An atom of element X has one more shell of electrons than an atom of beryllium, but it has one less valence electron than beryll
3241004551 [841]
The correct answer is Sodium
8 0
3 years ago
Read 2 more answers
While entering a freeway, a car accelerates from rest at a rate of 2.40 m/s2 for 12.0 s. (a) Draw a sketch of the situation. (b)
ArbitrLikvidat [17]

Answer:

a) See attached picture, b) We know the initial velocity = 0, initial position=0, time=12.0s, acceleration=2.40m/s^{2}, c) the car travels 172.8m in those 12 seconds, d) The car's final velocity is 28.8m/s

Explanation:

a) In order to draw a sketch of the situation, I must include the data I know, the data I would like to know and a drawing of the car including the direction of the movement and its acceleration, just like in the attached picture.

b) From the information given by the problem I know:

initial velocity =0

acceleration = 2.40m/s^{2}

time = 12.0 s

initial position = 0

c)

unknown:

displacement.

in order to choose the appropriate equation, I must take the knowns and the unknown and look for a formula I can use to solve for the unknown. I know the initial velocity, initial position, time, acceleration and I want to find out the displacement. The formula that contains all this data is the following:

x=x_{0}+V_{x0}t+\frac{1}{2}a_{x}t^{2}

Once I got the equation I need to find the displacement, I can plug the known values in, like this:

x=0+0(12s)+\frac{1}{2}(2.40\frac{m}{s^{2}} )(12s)^{2}

after cancelling the pertinent units, I get that  my answer will be given in meters. So I get:

x=\frac{1}{2} (2.40\frac{m}{s^{2}} )(12s)^{2}

which solves to:

x=172.8m

So the displacement of the car in 12 seconds is 172.8m, which makes sense taking into account that it will be accelerating for 12 seconds and each second its velocity will increase by 2.4m/s.

d) So, like the previous part of the problem, I know the initial position of the car, the time it travels, the initial velocity and its acceleration. Now I also know what its final position is, so we have more than enough information to find this answer out.

I need to find the final velocity, so I need to use an equation that will use some or all of the known data and the unknown. In order to solve this problem, I can use the following equation:

a=\frac{V_{f}-V_{0} }{t}

Next, since I need to find the final velocity, I can solve the equation just for that, I can start by multiplying both sides by t so I get:

at=V_{f}-V_{0}

and finally I can add V_{0} to both sides so I get:

V_{f}=at+V_{0}

and now I can proceed and substitute the known values:

V_{f}=at+V_{0}

V_{f}=(2.40\frac{m}{s^{2}}} (12s)+0

which solves to:

V_{f}=28.8m/s

8 0
3 years ago
Read 2 more answers
Bonus: (It's not that hard, you just have to pay attention to units.) The Saturn V rocket first stage
agasfer [191]

v = 2.45×10^3\:\text{m/s}

Explanation:

Newton's 2nd Law can be expressed in terms of the object's momentum, in this case the expelled exhaust gases, as

F = \dfrac{d{p}}{d{t}} (1)

Assuming that the velocity remains constant then

F = \dfrac{d}{dt}(mv) = v\dfrac{dm}{dt}

Solving for v, we get

v = \dfrac{F}{\left(\frac{dm}{dt}\right)}\;\;\;\;\;\;\;(2)

Before we plug in the given values, we need to convert them first to their appropriate units:

The thrust <em>F</em><em> </em> is

F = 7.5×10^6\:\text{lbs}×\dfrac{4.45\:\text{N}}{1\:\text{lb}} = 3.34×10^7\:\text{N}

The exhaust rate dm/dt is

\dfrac{dm}{dt} = 15\dfrac{T}{s}×\dfrac{2000\:\text{lbs}}{1\:\text{T}}×\dfrac{1\:\text{kg}}{2.2\:\text{lbs}}

\;\;\;\;\;= 1.36×10^4\:\text{kg/s}

Therefore, the velocity at which the exhaust gases exit the engines is

v = \dfrac{F}{\left(\frac{dm}{dt}\right)} = \dfrac{3.34×10^7\:\text{N}}{1.36×10^4\:\text{kg/s}}

\;\;\;= 2.45×10^3\:\text{m/s}

6 0
2 years ago
Which country had the largest population in 1997
nignag [31]
China i hope this helped
6 0
3 years ago
Other questions:
  • How much heat is absorbed by a 74g iron skillet when its temperature rises from 7oC to 28oC?
    10·1 answer
  • A force of 100N was necessary to lift a rock. A total of 150J of work was done. How far was the rock lifted?
    6·1 answer
  • The volume flow rate of blood leaving the heart to circulate throughout the body is about 5 L/min for a person at rest. All this
    7·1 answer
  • A student combined equal amounts of two solutions. One solution had a pH of 2 and the other had a pH of 12. Which would most lik
    13·2 answers
  • Electromagnetic force is present when electromagnetic fields
    6·2 answers
  • When 6.0 L of He(g) and 10. L of N2(g), both at 0oC and 1.0 atm, are pumped into an evacuated 4.0 L rigid container, the final p
    14·1 answer
  • A wave has a period of 4 seconds. What is its frequency?
    15·1 answer
  • A wheel of diameter 8.0 cm has a cord of length 6.0 m wound around its periphery. Starting from rest, the wheel is given a const
    11·1 answer
  • 2. A mass-spring system oscillates with a frequency of 20 Hz. What is the period?
    15·1 answer
  • What is the kinetic energy of a 0.5 kg soccer ball that is traveling at a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!