1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leto [7]
3 years ago
6

There is a seasaw that's holding two men. The seesaw has a length of 18m that can pivot from a point at its center. Man 1 has a

weighs 75 kg, and sits 1.75m from the central pivot point. Man 2 weighs 55 kg. How far from the pivot point must man 2 sit to balance the seesaw, so that it is parallel to the ground with no one touching the ground?
Physics
1 answer:
Alex3 years ago
3 0

Answer:

Distance=  2.3864m

Explanation:

So that the balance is in equilibrium parallel to the floor, we must match the moment each man makes with respect to the pivot point.

In many cases the point of application of force does not coincide with the point of application in the body. In this case the force acts on the object and its structure at a certain distance, by means of an element that transfers that action of this force to the object.

This combination of force applied by the distance to the point of the structure where it is applied is called the moment of force F with respect to the point. The moment will attempt a rotation shift or rotation of the object. The distance from the force to the point of application is called the arm.

Mathematically it is calculated by expression:

M= F×d

The moment caused by the first man is:

M1= 75kg × (9.81m/s²) × 1.75m= 1287.5625 N×m

The moment caused by the second man must be equal to that caused by the first by which:

M2= 1287.5625 N×m= 55kg × (9.81m/s²) × distance ⇒

⇒distance= (1287.5625 N×m)/( (55kg × (9.81m/s²) )= 2.3864m

At this distance from the pivot point, the second should sit down so that the balance is balanced parallel to the ground.

You might be interested in
The outer surface of a skier’s clothes of emissivity 0.7000.700 is at a temperature of 5.505.50 °C. Find the rate of radiation i
Ludmilka [50]

Answer:

121.0 W

Explanation:

We use the equation for rate of heat transfer during radiation.

Q/t = σεA(T₂⁴ - T₁⁴)

Since temperature of surroundings = T₁ = -20.0°C = 273 +(-20) = 253 K, and temperature of skier's clothes = T₂ = 5.50°C = 273 + 5.50 = 278.5 K.

Surface area of skier , A = 1.60 m², emissivity of skier's clothes,  ε = 0.70 and σ =  5.67 × 10⁻⁸ W/m²K⁴ .

Therefore, the rate of heat transfer by radiation Q/t is

Q/t = σεA(T₂⁴ - T₁⁴) = (5.67 × 10⁻⁸ W/m²K⁴ ) × 0.70 × 1.60 m² × (278.5⁴ - 253⁴) = 6.3054 × (1918750544.0625) × 10⁻⁸ W = 1.2098 × 10² W = 120.98 W ≅ 121.0 W

7 0
3 years ago
Read 2 more answers
What type of bonding is represented in Figure 2-2???
Sindrei [870]
Answer:  "ionic bonding" .
_______________________________________
6 0
3 years ago
Three oxygen isotopes
igomit [66]
Stable isotopes, radioisotopes, oxygen

6 0
2 years ago
Light striking a metal surface causes electrons to be emitted from the metal via the photoelectric effect.In a particular experi
ANEK [815]

The number of electrons emitted from the metal per second increases if the intensity of the incident light is increased.

Answer: Option B

<u>Explanation:</u>

As a result of photoelectric effect, electrons are emitted by the light incident on a metal surface. The emitted electrons count and its kinetic energy can measure as the function of light intensity and frequency. Like physicists, at the 20th century beginning, it should be expected that the light wave's energy (its intensity) will be transformed into the kinetic energy of emitted electrons.

In addition, the electrons count emitting from metal must vary with light wave frequency. This frequency relationship was expected because the electric field oscillates due to the light wave and the metal electrons react to different frequencies. In other words, the number of electrons emitted was expected to be frequency dependent and their kinetic energy should be dependent on the intensity (constant wavelength) of light.

Thus, the maximum in kinetic energy of electrons emitted increases with increase in light's frequency and is experimentally independent of light intensity. So, the number of emitted electrons is proportionate to the intensity of the incident light.

5 0
3 years ago
Jasper made a list of the properties of electromagnetic waves. Identify the mistake in the list. Electromagnetic Wave Properties
Nata [24]

Answer:

Statement 2 is wrong

Explanation:

To check the statements in this exercise, let's describe the main properties of electromagnetic waves. Let's describe the characteristics

* they are transverse waves

* formed by the oscillations of the electric and magnetic fields

* the speed of the wave is the speed of light

with these concepts let's review the final statements

1) True. Formed by the oscillation of the two fields

2) False. They are transverse waves

3) True. Can travel by vacuum as they are supported by oscillations of the electric and magnetic fields

4) True. They all have the same speed of light

Statement 2 is wrong

6 0
3 years ago
Other questions:
  • The position of a 55 g oscillating mass is given by x(t)=(2.0cm)cos(10t), where t is in seconds. determine the velocity at t=0.4
    13·2 answers
  • The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0° above the horizo
    12·1 answer
  • A box fails to slide down a ramp at a warehouse. what happens if you put the box on a cart that has wheels?
    8·2 answers
  • Which element is this?
    8·2 answers
  • EASY. PLEASE HELP. David is on a school bus stopped at a pick up point where students are getting on the bus. Once everyone is s
    15·1 answer
  • Changr 20 min in to hr​
    5·1 answer
  • Each element has its own emission and absorption lines. What is the best explanation for this?
    7·1 answer
  • PLEASE REAL ANSWERS IM SUPER BEHIND
    8·1 answer
  • A concave mirror of focal length 10cm forms an inverted image of 40cm from the mirror and 4cm high. Determine the position and s
    11·1 answer
  • A cyclist rides at a constant speed of 4. 5 m/s around a curve. If the centripetal acceleration is 29 m/s2, what is the radius o
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!