Answer:
The peak value of the electric field is 489.64 V/m
Explanation:
Given;
power of the laser, P = 1.0 mW = 1 x 10⁻³ W
Radius of the beam, R = 1.0 mm = 1 x 10⁻³ m
Area of the beam = πr² = π(1 x 10⁻³ )² = 3.142 x 10⁻⁶ m²
The average intensity of the light = P / A
The average intensity of the light = ( 1 x 10⁻³) / (3.142 x 10⁻⁶)
The average intensity of the light = 318.27 W/m²
The peak value of the electric field is given by;

Therefore, the peak value of the electric field is 489.64 V/m.
Inertia is directly proportional to mass.
What is Walter Lewin famous for?
Walter Hendrik Gustav Lewin (born January 29, 1936) is a Dutch astrophysicist and former professor of physics at the Massachusetts Institute of Technology.
Lewin earned his doctorate in nuclear physics in 1965 at the Delft University of Technology and was a member of MIT's physics faculty for 43 years beginning in 1966 until his retirement in 2009.
According to Walter Levin,
The concept of moment of inertia is demonstrated by rolling a series of cylinders down an inclined plane.
Inertia is the resistance of any physical object to a change in its velocity. This includes changes to the object's speed, or direction of motion. An aspect of this property is the tendency of objects to keep moving in a straight line at a constant speed when no forces act upon them.
By rolling a series of cylinders down on an inclined plane , he demonstrated that a cylinder have a smooth friction.
He compares the rolling cylinder by using hollow cylinder and a heavy cylinder , and finalize the result that a hollow cylinder moves slowly but the heavy cylinder move faster.
Hence , By doing this experiment he explained about the inertia that Inertia depend on the mass of the object. As the heavy the object it will take more time to travel or move.
Learn more about inertia here:brainly.com/question/3268780
#SPJ1
The work done by the battery is equal to the charge transferred during the process times the potential difference between the two terminals of the battery:

where q is the charge and

is the potential difference.
In our problem, the work done is W=39 J while the potential difference of the battery is

, so we can find the charge transferred by the battery:
B.) <span>The range of all electromagnetic radiation is known as the "Electromagnetic Spectrum"
Hope this helps!
</span>