1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WARRIOR [948]
3 years ago
11

An electron travels with speed 6.0 106m/s between the two parallel charged plates shown in the figure. The plates are separated

by 1.0 cm and are charged by a200 V battery.What magnetic field strength will allow the electron to pass between the plates without being deflected?
Physics
1 answer:
Aneli [31]3 years ago
3 0

Answer:

3.3 mT

Explanation:

First of all, we need to find the strength of the electric field between the two parallel plates.

We have:

\Delta V=200 V (potential difference between the two plates)

d=1.0 cm=0.01 m (distance between the plates)

So, the electric field is given by

E=\frac{\Delta V}{d}=\frac{200 V}{0.01 m}=2\cdot 10^4 V/m

Now we want the electron to pass between the plates without being deflected; this means that the electric force and the magnetic force on the electron must be equal:

F_E = F_B\\qE=qvB

where

q is the electron charge

E is the electric field strength

v is the electron's speed

B is the magnetic field strength

In this case, we know the speed of the electron: v=6.0\cdot 10^6 m/s, so we can solve the formula to find B, the magnetic field strength:

B=\frac{E}{v}=\frac{2\cdot 10^4 V/m}{6.0\cdot 10^6 m/s}=0.0033 T=3.3 mT

You might be interested in
What measurements or observations tells you that a car is accelerating
lutik1710 [3]

You need to observe the car at two different times.

-- The first time: 
You write down the car's speed, and the direction it's pointing.

-- The second time:
You write down the car's speed and the direction it's pointing, again.

You take the data back to your lab to analyze it.

-- You compare the first and second speed. If they're different,
then the car had acceleration during the time between the two
observations.

-- You compare the first and second direction.  If those are different,
even if the speeds are the same, then the car had acceleration during
the time between the two observations.

(Remember, "acceleration" doesn't mean "speeding up". 
It means any change in speed or direction of motion.)
8 0
3 years ago
Read 2 more answers
Can you answer this math homework? Please!
steposvetlana [31]
Using the count data and observational data you acquired, calculate the number of CFUs in the original sample
5 0
2 years ago
You pull a solid nickel ball with a density of 8.91 g/cm3 and a radius of 1.40 cm upward through a fluid at a constant speed of
Sunny_sXe [5.5K]

Answer:

P = 1.090\,N

Explanation:

The constant speed means that ball is not experimenting acceleration. This elements is modelled by using the following equation of equilibrium:

\Sigma F = P - W + F_{D}

\Sigma F = P - \rho \cdot V \cdot g + c\cdot v = 0

Now, the exerted force is:

P = \rho \cdot V \cdot g - c\cdot v

The volume of a sphere is:

V = \frac{4\cdot \pi}{3}\cdot R^{3}

V = \frac{4\cdot \pi}{3}\cdot (0.014\,m)^{3}

V = 1.149\times 10^{-5}\,m^{3}

Lastly, the force is calculated:

P = (8910\,\frac{kg}{m^{3}} )\cdot (1.149\cdot 10^{-5}\,m^{3})\cdot (9.81\,\frac{m}{s^{2}} )+(0.950\,\frac{kg}{s})\cdot (0.09\,\frac{m}{s} )

P = 1.090\,N

5 0
3 years ago
A runner drank a lot of water during a race. What is the expected path of the extra filtered water molecules?
Naddika [18.5K]

Answer:

Afferent arteriole, glomerulus, nephron tubule, collecting duct

Explanation:

Blood enters the kidney through the renal artery, a thick branch from the descending aorta. In the hilum, it is divided into several branches that are distributed through the lobes of the kidney and are branching forming numerous afferent arterioles that form the glomerular clew. It is precisely the walls of these capillaries that act as ultrafilters, allowing small particles to pass through.

Blood that flows through the <u>afferent arteriole</u> circulates through the capillary vessels of the kidney (the true capillaries that provide the kidney with oxygen and nutrients necessary for its function). These capillaries are grouped together to form the renal vein which, in turn, pours into the inferior vena cava.

Given the function of the kidneys to eliminate waste products through urine, it is not surprising that these organs are the ones that receive the most blood per gram of weight. One way to express renal blood flow is by considering the renal fraction or fraction of cardiac output that passes through the kidneys.

The regulation of blood flow in the glomeruli is achieved by three formations: the polar bearing, the Goormaghtigh cells and the dense macula. The polar bearing consists of a thickening of the afferent arteriole wall before it enters the <u>renal glomerulus</u>. The arteriole loses its elastic membrane, the endothelium becomes discontinuous and the middle tunic is arranged in two layers, formed by secretory cells: these secretory cells produce Angiotensin and Erythropoietin.

Goormaghtigh cells are arranged at an angle between afferent and effector arterioles and meet in small columns. They are closely related to polar bearing cells. Between both formations is the dense macula (or Zimmerman's dense macula) that is in contact with the distal tubule and afferent arteriole just before it penetrates the glomerulus. These three formations, polar bearing, Goormaghtigh cells and dense macula form the juxtaglomerular apparatus that regulates the blood flow in the glomerulus.

<u>Nephrons</u> regulate water and soluble matter (especially Electrolytes) in the body, by first filtering the blood under pressure, and then reabsorbing some necessary fluid and molecules back into the blood while secreting other unnecessary molecules.

The reabsorption and secretion are achieved with the mechanisms of Cotransporte and Contratransporte established in the nephrons and associated collection ducts. Blood filtration occurs in the glomerulus, a capping of capillaries that is inside a Bowman's capsule.

Liquid flows from the nephron in the <u>collecting duct</u> system. This segment of the nephron is crucial to the process of water conservation by the body. In the presence of the antidiuretic hormone (ADH; also called vasopressin), these ducts become water permeable and facilitate their reabsorption, thus concentrating the urine and reducing its volume. Conversely, when the body must remove excess water, for example after drinking excess fluid, ADH production is decreased and the collecting tubule becomes less permeable to water, making the urine diluted and abundant.

6 0
3 years ago
We dont see objects. We see the light ____ off objects.
Romashka [77]
The answer is BBBBBBBBB
4 0
3 years ago
Other questions:
  • Consider three different resistors connected to a battery in parallel.
    9·1 answer
  • What statement best describes the kind of change that could have taken place
    8·1 answer
  • An ideal spring obeys hooke's law: f = −bikx. a mass of m = 0.3 kg hung vertically from this spring stretches the spring 0.13 m.
    14·1 answer
  • NEED HELP ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    14·1 answer
  • What is the usual time ice takes to evaporate above a Bunsen burner?
    13·1 answer
  • The change of phase from a solid to a gas is called _____. evaporation melting sublimation vaporization
    10·2 answers
  • When water is boiled at a pressure of 2.00 atm, the heat of vaporization is 2.20×106J/kg2.20×10
    13·1 answer
  • Formula One racers speed up much more quickly than normal passenger vehicles, and they also can stop in a much shorter distance.
    11·1 answer
  • Brainliest!!! Write: Forces are all around us. Imagine that your teacher has asked you to teach a lesson to your peers about for
    13·1 answer
  • A person uses a match to light charcoal in a grill. Which statement describes
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!