Answer: time t = 10s
Explanation:
Given;
Diameter = 8.0cm = 0.08m
Radius r = diameter/2 = 0.08/2 = 0.04m
Cord length d = 6.0m
Angular acceleration = 3.0rads/s2
Time = t
Converting the angular acceleration to linear acceleration
a = a* × r = 3.0 × 0.04 = 0.12m/s
d = vt + 1/2 (a × t^2)
Initial velocity v = 0, vt = 0 therefore;
d = 1/2 ( a × t^2)
t = √(2d/a)
t = √ [(2× 6)/0.12]
t = 10s
How did you take a picture?
Answer:
The speed of the baseball is approximately 19.855 m/s
Explanation:
From the question, we have;
The frequency of the microwave beam emitted by the speed gun, f = 2.41 × 10¹⁰ Hz
The change in the frequency of the returning wave, Δf = +3190 Hz higher
The Doppler shift for the microwave frequency emitted by the speed gun which is then reflected back to the gun by the moving baseball is given by 2 shifts as follows;


Where;
Δf = The change in frequency observed, known as the beat frequency = 3190 Hz
= The speed of the baseball
c = The speed of light = 3.0 × 10⁸ m/s
f = The frequency of the microwave beam = 2.41 × 10¹⁰ Hz
By plugging in the values, we have;


The speed of the baseball,
≈ 19.855 m/s
They are both good conductors if both heat and electricity due to the sea of delocalized electrons that is floating around without getting bonded to an atom.
Such electrons can flow around freely to conduct heat and electricity.
<h2>Answer: Albedo
</h2>
The <u>albedo</u> is an amount that expresses the percentage of radiation a surface reflects with respect to the incident radiation.
In other words:
This amount allows us to know the level of radiation that <u>reflects</u> a surface compared to the total <u>radiation it receives</u>.
According to this, light surfaces such as snow covered ground or white sand will have a higher albedo than dark surfaces such as carbon covered ground. It is also important to note, the albedo will be higher on glossy surfaces than on matte surfaces.
It should be noted that the albedo of the Earth is on average about
, which means that part of the radiation received by the Sun is absorbed and another part reflected back to space.