The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
The mass of the box would be 30!
Gravitational force is given by, 
Where, m and M are the masses of the objects, R is the distance between them and G gravitational constant.
Gravitational force of the star on planet 1, 
Gravitational force of the star on planet 2, 
Ratio, 

Therefore, the gravitational force of the star on the planet 1 is three times that on planet 2.
Answer:
Explanation:
a) A coin has two sides, therefore the total outcome possible when a coin is tossed is 2 i.e Head (H) and Tail (T)
outcome of two coins will be 4 i.e 2^2
Outcome of three coins will be 8 i.e 2^3 and so on. Since its following a trend, the outcome when 'n' coins is tossed will be 2^n.
Using the general formula, the possible outcome when a coin is tossed 13 times will be "2^13"
b)
Answer:
As the tines of the tuning fork vibrate at their own natural frequency, they created sound waves that impinge upon the opening of the resonance tube. These impinging sound waves produced by the tuning fork force air inside of the resonance tube to vibrate at the same frequency.