Economic cost is a rescission making tangible factor true
Answer:
Explanation:
Given
velocity at A is 
For 
velocity is increasing at 
Tangential acceleration is given by





at 


thus 
Velocity in terms of Displacement is given by



When car has traveled
th of distance i.e.




on solving we get 
Thus velocity at 

(b)Acceleration when car has traveled three-fourth the way of track
normal acceleration 

Tangential acceleration 

Net acceleration 

Answer:
Distribution factor P = =38.33
V = 7.826 ml
Explanation:
given details:
BOD =230 mg/l
DO inital = 8.0mg/l
DO final = 2.0mg/l
we know
BOD = [DO inital -DO final] * distribution factor
230 = [8 - 2] D.F
Distribution factor P 
Distribution factor P = =38.33
THE RANGE OF WASTE WATER VOLUME IN 300 ml bottle is
distribution factor 

V = 7.826 ml
(a) The number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b) ρ = n X (AM) / v X Nₐ
<u>Explanation:</u>
<u />
Given-
Lattice parameter of Li = 3.5089 X 10⁻⁸ cm
1 vacancy per 200 unit cells
Vacancy per cell = 1/200
(a)
Number of vacancies per cubic cm = ?
Vacancies/cm³ = vacancy per cell / (lattice parameter)³
Vacancies/cm³ = 1 / 200 X (3.5089 X 10⁻⁸cm)³
Vacancies/cm³ = 1.157 X 10²⁰
Therefore, the number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b)
Density is represented by ρ
ρ = n X (AM) / v X Nₐ
where,
Nₐ = Avogadro number
AM = atomic mass
n = number of atoms
v = volume of unit cell
Answer: The energy system related to your question is missing attached below is the energy system.
answer:
a) Work done = Net heat transfer
Q1 - Q2 + Q + W = 0
b) rate of work input ( W ) = 6.88 kW
Explanation:
Assuming CPair = 1.005 KJ/Kg/K
<u>Write the First law balance around the system and rate of work input to the system</u>
First law balance ( thermodynamics ) :
Work done = Net heat transfer
Q1 - Q2 + Q + W = 0 ---- ( 1 )
rate of work input into the system
W = Q2 - Q1 - Q -------- ( 2 )
where : Q2 = mCp T = 1.65 * 1.005 * 293 = 485.86 Kw
Q2 = mCp T = 1.65 * 1.005 * 308 = 510.74 Kw
Q = 18 Kw
Insert values into equation 2 above
W = 6.88 Kw