1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kumpel [21]
3 years ago
5

2) Calculate the gravitational potential energy that a parachutist has just as he

Physics
1 answer:
masya89 [10]3 years ago
5 0

Answer:

<em>The gravitational potential energy of the parachutist is 3,528,000 J</em>

Explanation:

<u>Gravitational Potential Energy </u>

It's the energy stored in an object because of its height in a gravitational field.

It can be calculated with the equation:

U=m.g.h

Where:

m = mass of the object

h  = height with respect to a fixed reference

g  = acceleration of gravity, usually taken as 9.8 m/s^2.

The parachutist has a mass of m=120 kg and he jumps at a height of h= 3,000 m. Computing the gravitational potential energy:

U = 120 * 3,000 * 9.8

U = 3,528,000 J

The gravitational potential energy of the parachutist is 3,528,000 J

You might be interested in
What three things do cells / organisms have to do to maintain homeostasis? ____ from food, get rid of ____, and _____(mitosis/me
user100 [1]
1) use energy from food
2) get rid of wastes
3) maintain
5 0
2 years ago
To do your homework correctly you should (5 points)
pychu [463]

Answer:

C according to me

Explanation:

ITS HARD

4 0
3 years ago
Read 2 more answers
(a) Neil A. Armstrong was the first person to walk on the moon. The distance between the earth and the moon is . Find the time i
a_sh-v [17]

Answer:

a)<em> It took 1.28 seconds to Neil Armstrong's voice to reach the Earth via radio waves. </em>

b) <em>The minimum time that will be required for a message from Mars to reach the Earth via radio waves is 192 seconds. </em>

Explanation:

The electromagnetic spectrum is the distribution of radiation due to the different frequencies at which it radiates and its different intensitie. That radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it.

The distribution of the radiation in the electromagnetic spectrum can also be given in wavelengths, but it is more frequent to work with it at frequencies:

  • Gamma rays
  • X-rays
  • Ultraviolet rays
  • Visible region
  • Infrared
  • Microwave
  • Radio waves.

Any radiation that belongs to electromagnetic spectrum has a speed in vacuum of 3x10^{8}m/s.  

<em>a) Find the time it took for his voice to reach the Earth via radio waves.</em>

To know the time that took for Neil Armstrong's voice to reach the Earth via radio waves, the following equation can be used:

c = \frac{d}{t}  (1)

Where v is the speed of light, d is the distance and t is the time.

Notice that t can be isolated from equation 1.

t = \frac{d}{c}  (2)

The distance from the Earth to the Moon is 3.85x10^{8} m, therefore.

t = \frac{3.85x10^{8} m}{3x10^{8}m/s}

t = 1.28s

Hence, it took 1.28 seconds to Neil Armstrong's voice to reach the Earth via radio waves.

<em>b) Determine the minimum time that will be required for a message from Mars to reach the Earth via radio waves.</em>

The distance from the Earth to the Mars at its closest approach is 5.76x10^{10}m, therefore.

t = \frac{5.76x10^{10}m}{3x10^{8}m/s}

t = 192s

Hence, the minimum time that will be required for a message from Mars to reach the Earth via radio waves is 192 seconds.

3 0
3 years ago
A 0.0250-kg bullet is accelerated from rest to a speed of 550 m/s in a 3.00-kg rifle. The pain of the rifle’s kick is much worse
kondaur [170]

Answer:

a) 4.583 m/s

b) 31.505 J

c) 0.491 m/s

d) 3.375 J

e)

   p_player = (110 kg)(8 m/s) = 880 kg m/s

   p_ball = (0.41 kg)(25 m/s) = 10.25 kg m/s

Explanation:

HI!

a)

We can calculate the recoil velocity by conservation of momentum, remember that p=mv.

The momentum of the bullet is:

p_b = (0.0250 kg)*(550 m/s )

The momentum of the rifle is:

p_r = (3 kg) * v

Since the total initial momentum is zero:

p_b = p_r

That is:

v = (550 m/s ) (0.0250 kg/ 3 kg ) = 4.583 m/s

b)

The kinetic energy gained by the rifle is:

K = (1/2) m v^2 = (1/2) *(3 kg) *(4.583 m/s)^2 = 31.505 J

c)

We use the same formula as in a), but with m=28kg instead of 3 kg

v = (550 m/s ) (0.0250 kg/ 28 kg ) = 0.491 m/s

d)

Again, the same formula as b, but with m=28 and v=0.491 m/s

K = 3.375 J

e)

p_player = (110 kg)(8 m/s) = 880 kg m/s

p_ball = (0.41 kg)(25 m/s) = 10.25 kg m/s

I believe that the kinetic energy is more related to the problem than the momentum. The relation between these two quantities is:

K = p^2/(2m)

usiing this relation, we get:

K_player = 3520 J

K_ball =  128.125 J

Therefore the kinetic energy of the player is around 27 time larger than the kinetic energy of the ball, that being said, the pain of being tackled by that player is around 27 times greater that being hit by the ball!

4 0
3 years ago
We divide the electromagnetic spectrum into six major categories of light, listed below. Rank these forms of light from left to
Zigmanuir [339]

Answer:

gamma rays , X rays,  ultraviolet , visible light , infrared,  radio waves

Explanation:

The electromagnetic spectrum is the set of electromagnetic radiations distributed in their different frequencies or wavelengths, which in turn are related to their energy.   If we go from the smallest wavelengths known up to now (because according to physics the electromagnetic spectrum is infinite and continuous) to the longest, the electromagnetic spectrum covers the following radiations:  

Gamma rays, X-rays, ultraviolet, visible light (all the colors we are able to see), infrared, radio waves and microwaves.  

Let's make a brief of them:

-Gamma rays: With a wavelength in the order of 10^{-12}m, is a type of ionizing radiation capable of penetrating matter quite deeply and is able to cause serious damage to the nucleus of the cells. Inaddiito, these rays are used to sterilize medical equipment and food.

-X rays: With a wavelength between 1m and 10km. It is invisible to the human eye, capable of crossing opaque bodies and of being an ionizing radiation.

-Ultraviolet light: Whose wavelength is approximately between 100 nm and 380 nm; is a type of electromagnetic radiation that is not visible to the human eye.

-Visible light: This part of the spectrum is located between ultraviolet light and infrared light (380 nm - 780 nm).  It should be noted, the fact the only part of the whole electromagnetic spectrum is visible to humans is because the receptors in our eyes are only sensitive to these wavelengths.

-Infrared: This type of radiation is not visible to the human eye, since its wavelengths are outside the visible spectrum (between 700 nm and 1 mm).  

These waves can be divided into:  

<u>- Near infrared</u> or long wave infrared: it is the least sensitive to color and is easily absorbed by water.  

<u>- Medium or medium wave infrared:</u> it is also insensitive to color and easily absorbed by water and many types of plastics and paints.  

-<u> Far infrared or short wave infrared: </u>it is more penetrating than the long wave and is good for heating metals, these waves also can pass through clear materials.  

This light has many uses, including heating lamps in physiotherapy and medical treatments, heat sensing devices, among others.

-Radio waves: These are a type of electromagnetic radiation with wavelengths between 10 m to 10,000 m. This type of electromagnetic waves is very well reflected in the ionosphere, the layer of the atmosphere through which they travel directly or using repeaters.  In addition, they are very useful to transport information, being important in telecommunications. They are used not only for conventional radio transmissions but also in mobile telephony and TV.  

5 0
3 years ago
Other questions:
  • Are we even real? Do we exist or are we robots or a simulation or experiment?
    14·2 answers
  • Which planet may have a habitable moon
    7·2 answers
  • Suppose that she pushes on the sphere tangent to its surface with a steady force of F = 60 N and that the pressured water provid
    10·1 answer
  • Which equation represents the total energy of a system
    6·1 answer
  • Answer in detail? Describe an activity that gives an understanding of ‘Electrostatic force’.
    5·1 answer
  • PLEASE HELP!!!
    12·1 answer
  • 3. A 70 kg person climbs a 6 m ladder. How much work is required by the person?
    8·1 answer
  • What are conducting patterns?
    5·1 answer
  • If you are in a car that is being pulled down a 56 m path with a force of 12.5
    9·1 answer
  • If an object has a mass of 4 kg and an acceleration of 8 m/s2, what is the force this object exerts?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!